53 lines
1.8 KiB
Python
53 lines
1.8 KiB
Python
|
#!/usr/bin/env python3
|
|||
|
# -*- coding: utf-8 -*-
|
|||
|
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
# IMPORTS
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
from local.maths import *;
|
|||
|
from local.typing import *;
|
|||
|
|
|||
|
from code.core.log import *;
|
|||
|
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
# GLOBAL VARIABLES/CONSTANTS
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
#
|
|||
|
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
# ALGORITHM interpolation
|
|||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
def InterpolationSearch(L: List[int], x: int, u: int, v: int) -> int:
|
|||
|
'''
|
|||
|
Inputs: L = Liste von Zahlen, x = Zahl, [u, v] = Suchinterval.
|
|||
|
Annahme: L sei aufsteigend sortiert.
|
|||
|
Outputs: Position von x in L, sonst −1 wenn x nicht in L.
|
|||
|
'''
|
|||
|
if not(L[u] <= x and x <= L[v]):
|
|||
|
logDebug('Element kann sich nicht in der Liste befinden!')
|
|||
|
return -1;
|
|||
|
p = getSuchposition(L=L, x=x, u=u, v=v);
|
|||
|
logDebug('Interpolant von x in (u, v)={uv} ist p = {p}.'.format(uv=(u, v), p=p));
|
|||
|
if L[p] == x:
|
|||
|
logDebug('x in Position p gefunden');
|
|||
|
return p;
|
|||
|
elif x > L[p]:
|
|||
|
logDebug('Suche in L[p+1], L[p+2], ..., L[v] fortsetzen.');
|
|||
|
return InterpolationSearch(L=L, x=x, u=p+1, v=v);
|
|||
|
else: # x < L[p]
|
|||
|
logDebug('Suche in L[u], L[u+1], ..., L[p-1] fortsetzen.');
|
|||
|
return InterpolationSearch(L=L, x=x, u=u, v=p-1);
|
|||
|
|
|||
|
def getSuchposition(L: List[int], x: int, u: int, v: int) -> int:
|
|||
|
'''
|
|||
|
Inputs: L = Liste von Zahlen, x = Zahl, [u, v] = Suchinterval.
|
|||
|
Outputs: Interpolierte Position, um Suchinterval ausgeglichen aufzuteilen.
|
|||
|
'''
|
|||
|
AddToCounter();
|
|||
|
r = (x - L[u])/(L[v]-L[u]);
|
|||
|
p = math.floor(u + r*(v-u))
|
|||
|
return p;
|