master > master: code - refactoring + counting für maxsubsum überarbeitet

This commit is contained in:
RD 2021-10-25 12:33:57 +02:00
parent 82962e376d
commit ecbf274be6
6 changed files with 146 additions and 224 deletions

View File

@ -11,4 +11,4 @@ from code.algorithms.search.interpol import InterpolationSearch;
from code.algorithms.search.jump import JumpSearchLinear;
from code.algorithms.search.jump import JumpSearchExponentiell;
from code.algorithms.search.ith_smallest import FindIthSmallest;
from code.algorithms.search.ith_smallest_dc import FindIthSmallestDC;
from code.algorithms.search.ith_smallest import FindIthSmallestDC;

View File

@ -63,3 +63,35 @@ def FindIthSmallest(L: List[int], i: int) -> int:
logDebug('Entfernte Minimum: {value}.'.format(value = minValue));
i = i - 1;
return FindIthSmallest(L=L[:index] + L[(index+1):], i=i);
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ALGORITHM jump search (D & C)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@algorithmInfos(name='Auswahlproblem (i. kleinstes Element, D & C)', outputnames='value', checks=True, metrics=True, preChecks=preChecks, postChecks=postChecks)
def FindIthSmallestDC(L: List[int], i: int) -> int:
'''
Inputs: L = Liste von Zahlen, i = Ordinalzahl
Annahmen:
- L enthält keine Duplikate.
- L enthält mindestens i Elemente.
Outputs: Wert des i. kleinste Element in L.
Beachte 1.kleinstes <==> Minimum.
'''
AddToCounter();
p = L[len(L)-1]; # NOTE: Pivotelement kann beliebig gewählt werden
Ll = [ x for x in L if x < p ];
Lr = [ x for x in L if x > p ];
if len(Ll) == i - 1:
logDebug('Es gibt i-1 Elemente vor p={p}. ==> i. kleinste Element = p'.format(p=p));
return p;
elif len(Ll) >= i:
logDebug('Es gibt >= i Elemente vor p={p}. ==> Suche in linker Hälfte!'.format(p=p));
return FindIthSmallestDC(L=Ll, i=i);
else:
i = i - (len(Ll) + 1)
logDebug('Es gibt < i-1 Elemente vor p={p}. ==> Suche in rechter Hälfte!'.format(p=p));
return FindIthSmallestDC(L=Lr, i=i);

View File

@ -1,65 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from local.maths import *;
from local.typing import *;
from code.core.log import *;
from code.algorithms.search.sequential import SequentialSearch;
from code.algorithms.methods import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# GLOBAL VARIABLES/CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CHECKS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def preChecks(L: List[int], i: int, **_):
assert 1 <= i and i <= len(L), 'Der Wert von i muss zw. {lb} und {ub} liegen.'.format(lb = 1, ub = len(L));
assert sorted(L) == sorted(list(set(L))), 'Ungültiger Input: L darf keine Duplikate enthalten!';
return;
def postChecks(L: List[int], i: int, value: int, **_):
L_ = sorted(L);
assert L_[i-1] == value, 'Der Algorithmus hat versagt.';
return;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ALGORITHM jump search
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@algorithmInfos(name='Auswahlproblem (i. kleinstes Element, D & C)', outputnames='value', checks=True, metrics=True, preChecks=preChecks, postChecks=postChecks)
def FindIthSmallestDC(L: List[int], i: int) -> int:
'''
Inputs: L = Liste von Zahlen, i = Ordinalzahl
Annahmen:
- L enthält keine Duplikate.
- L enthält mindestens i Elemente.
Outputs: Wert des i. kleinste Element in L.
Beachte 1.kleinstes <==> Minimum.
'''
AddToCounter();
p = L[len(L)-1]; # NOTE: Pivotelement kann beliebig gewählt werden
Ll = [ x for x in L if x < p ];
Lr = [ x for x in L if x > p ];
if len(Ll) == i - 1:
logDebug('Es gibt genau i-1 Elemente vorm Pivotelment, p. Also ist p das i. kleinste Element.');
return p;
elif len(Ll) >= i:
logDebug('Es gibt mindestens i Elemente vorm Pivotelement, p. Suche wird in linker Hälfte fortgesetzt.');
return FindIthSmallestDC(L=Ll, i=i);
else:
i = i - (len(Ll) + 1)
logDebug('Es gibt weniger als i-1 Elemente vorm Pivotelement, p. Suche wird in rechte Hälfte nach {i}. kleinstem Element fortgesetzt.'.format(i=i));
return FindIthSmallestDC(L=Lr, i=i);

View File

@ -6,4 +6,4 @@
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from code.algorithms.sum.maxsubsum import MaxSubSum;
from code.algorithms.sum.maxsubsum_dc import MaxSubSumDC;
from code.algorithms.sum.maxsubsum import MaxSubSumDC;

View File

@ -43,17 +43,117 @@ def MaxSubSum(L: List[float]) -> Tuple[float, int, int]:
'''
maxSum: float = 0;
u: int = 0;
v: int = 0;
v: int = -1;
for i in range(len(L)):
for j in range(i+1, len(L)):
thisSum = 0;
# NOTE: Schleibe über Indexes von von i bis j
for k in range(i, j+1):
AddToCounter();
thisSum += L[k]
if thisSum > maxSum:
logDebug('max Teilsumme aktualisiert: Summe L[i] von i={i} bis {j} = {value}'.format(
i = i, j = j, value = thisSum
));
maxSum, u, v = thisSum, i, j;
## Bestimme maximale Teilsumme der linken Rände der Liste ab Index i:
maxSum_, _, k = lRandSum(L[i:]);
if maxSum_ > maxSum:
k += i; # NOTE: muss wegen Offset kompensieren
maxSum, u, v = maxSum_, i, k;
logDebug('max Teilsumme aktualisiert: Summe L[i] von i={u} .. {v} = {value}'.format(u = u, v = v, value = maxSum));
return maxSum, u, v;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ALGORITHM max sub sum (D & C)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@algorithmInfos(name='MaxSubSum (Maximale Teilsumme mit D & C)', outputnames=('maxSum', 'index_from', 'index_to'), checks=True, metrics=True, preChecks=preChecks, postChecks=postChecks)
def MaxSubSumDC(L: List[float]) -> Tuple[float, int, int]:
'''
Inputs: L = Liste von Zahlen
Outputs:
- maxSum = Wert der maximalen Summe einer Teilliste aufeinanderfolgender Elemente
- u, v = Indexes so dass die Teilliste [L[u], L[u+1], ..., L[v]] die maximale Summe aufweist
'''
maxSum = 0;
u = 0;
v = -1;
if len(L) == 1:
## wenn Liste aus 1 Element besteht, nicht teilen:
if L[0] > maxSum:
v = 0;
maxSum = L[0];
else:
u = math.ceil(len(L)/2);
Ll = L[:u];
Lr = L[u:];
## berechnet maximale Teilsumme der linken Hälfte:
maxSum1, u1, v1 = MaxSubSumDC(L=Ll);
## berechnet maximale Teilsumme der rechten Hälfte:
maxSum2, u2, v2 = MaxSubSumDC(L=Lr);
u2, v2 = u2 + len(Ll), v2 + len(Ll); # offsets kompensieren
## berechnet maximale Teilsumme mit Überschneidung zw. den Hälften:
maxSum3, u3, v3 = lrRandSum(Ll=Ll, Lr=Lr);
## bestimme Maximum der 3 Möglichkeiten:
maxSum = max(maxSum1, maxSum2, maxSum3);
if maxSum == maxSum1:
maxSum, u, v = maxSum1, u1, v1;
logDebug('max Teilsumme kommt in linker Partition vor: Summe L[i] von i={i} .. {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
elif maxSum == maxSum3:
maxSum, u, v = maxSum3, u3, v3;
logDebug('max Teilsumme kommt in Überschneidung vor: Summe L[i] von i={i} .. {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
else: # elif maxSum == maxSum2:
maxSum, u, v = maxSum2, u2, v2;
logDebug('max Teilsumme kommt in rechter Partition vor: Summe L[i] von i={i} .. {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
return maxSum, u, v;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def lrRandSum(Ll: List[float], Lr: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme einer Teiliste einer Liste,
wobei die Liste in zwei Intervalle partitioniert ist
und die Teilliste beide überschneidet.
Inputs: Ll, Lr = eine Partition einer Liste von Zahlen in zwei Intervalle
Outputs: maxSum, u=0, v
'''
maxSumL, u, _ = rRandSum(L=Ll);
maxSumR, _, v = lRandSum(L=Lr);
maxSum = maxSumL + maxSumR;
v += len(Ll) # offsets kompensieren
return maxSum, u, v;
def lRandSum(L: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme aller nicht leeren linken Segmente einer Liste.
Inputs: L = Liste von Zahlen
Outputs: maxSum, u(=0), v
'''
n = len(L);
## berechne kumulative Summen (vorwärts)
AddToCounter(n);
total = L[0];
maxSum = total;
u = 0;
v = 0;
for i in range(1, n):
total += L[i];
if total > maxSum:
v = i;
maxSum = total;
return maxSum, 0, v;
def rRandSum(L: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme aller nicht leeren rechten Segmente einer Liste.
Inputs: L = Liste von Zahlen
Outputs: maxSum, u, v(=len(L)-1)
'''
n = len(L);
## berechne kumulative Summen (rückwärts)
AddToCounter(n);
total = L[n-1];
maxSum = total;
u = n-1;
v = n-1;
for i in range(0, n-1)[::-1]:
total += L[i];
if total > maxSum:
u = i;
maxSum = total;
return maxSum, u, v;

View File

@ -1,145 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from local.maths import *;
from local.typing import *;
from code.core.log import *;
from code.algorithms.methods import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# GLOBAL VARIABLES/CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CHECKS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def preChecks(L: List[int], **_):
assert len(L) > 0, 'Liste darf nicht leer sein.';
return;
def postChecks(L: List[int], **_):
# TODO
return;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ALGORITHM max sub sum
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@algorithmInfos(name='MaxSubSum (Maximale Teilsumme mit D & C)', outputnames=('maxSum', 'index_from', 'index_to'), checks=True, metrics=True, preChecks=preChecks, postChecks=postChecks)
def MaxSubSumDC(L: List[float]) -> Tuple[float, int, int]:
'''
Inputs: L = Liste von Zahlen
Outputs:
- maxSum = Wert der maximalen Summe einer Teilliste aufeinanderfolgender Elemente
- u, v = Indexes so dass die Teilliste [L[u], L[u+1], ..., L[v]] die maximale Summe aufweist
'''
maxSum = 0;
u = 0;
v = -1;
if len(L) == 1:
## wenn Liste aus 1 Element besteht, nicht teilen:
if L[0] > maxSum:
v = 0;
maxSum = L[0];
else:
u = math.ceil(len(L)/2);
Ll = L[:u];
Lr = L[u:];
## berechnet maximale Teilsumme der linken Hälfte:
maxSum1, u1, v1 = MaxSubSumDC(L=Ll);
## berechnet maximale Teilsumme der rechten Hälfte:
maxSum2, u2, v2 = MaxSubSumDC(L=Lr);
u2, v2 = u2 + len(Ll), v2 + len(Ll); # offsets kompensieren
## berechnet maximale Teilsumme mit Überschneidung zw. den Hälften:
maxSum3, u3, v3 = lrRandSum(Ll=Ll, Lr=Lr);
## bestimme Maximum der 3 Möglichkeiten:
maxSum = max(maxSum1, maxSum2, maxSum3);
if maxSum == maxSum1:
maxSum, u, v = maxSum1, u1, v1;
logDebug('max Teilsumme kommt in linker Partition vor: Summe L[i] von i={i} bis {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
elif maxSum == maxSum3:
maxSum, u, v = maxSum3, u3, v3;
logDebug('max Teilsumme kommt in Überschneidung vor: Summe L[i] von i={i} bis {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
else: # elif maxSum == maxSum2:
maxSum, u, v = maxSum2, u2, v2;
logDebug('max Teilsumme kommt in rechter Partition vor: Summe L[i] von i={i} bis {j} = {value}'.format(L = L, i = u, j = v, value = maxSum));
return maxSum, u, v;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def lrRandSum(Ll: List[float], Lr: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme einer Teiliste einer Liste,
wobei die Liste in zwei Intervalle partitioniert ist
und die Teilliste beide überschneidet.
Inputs: Ll, Lr = eine Partition einer Liste von Zahlen in zwei Intervalle
Outputs: maxSum, u=0, v
'''
maxSumL, u, _ = rRandSum(L=Ll);
maxSumR, _, v = lRandSum(L=Lr);
maxSum = maxSumL + maxSumR;
v += len(Ll) # offsets kompensieren
return maxSum, u, v;
def lRandSum(L: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme aller nicht leeren linken Segmente einer Liste.
Inputs: L = Liste von Zahlen
Outputs: maxSum, u(=0), v
'''
n = len(L);
## berechne kumulative Summen (vorwärts)
AddToCounter(n);
total = L[0];
M = [total];
for i in range(1, n):
total += L[i];
M.append(total);
## berechne maximum
AddToCounter(n);
maxSum = M[0];
u = 0;
v = 0;
for i in range(1, n):
if M[i] > maxSum:
v = i;
maxSum = M[i];
return maxSum, 0, v;
def rRandSum(L: List[float]) -> Tuple[float, int, int]:
'''
Bestimmt maximale Teilsumme aller nicht leeren rechten Segmente einer Liste.
Inputs: L = Liste von Zahlen
Outputs: maxSum, u, v(=len(L)-1)
'''
n = len(L);
## berechne kumulative Summen (rückwärts)
AddToCounter(n);
total = L[n-1];
M = [total];
for i in range(0, n-1)[::-1]:
total += L[i];
M.insert(0, total);
## berechne maximum
AddToCounter(n);
maxSum = M[n-1];
u = n-1;
v = n-1;
for i in range(0, n-1)[::-1]:
if M[i] > maxSum:
u = i;
maxSum = M[i];
return maxSum, u, v;