ads1_2021/code/algorithms/search/binary.py

67 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from local.maths import *;
from local.typing import *;
from code.core.log import *;
from code.algorithms.methods import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# GLOBAL VARIABLES/CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CHECKS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def preChecks(L: List[int], **_):
assert L == sorted(L), 'Ungültiger Input: L muss aufsteigend sortiert sein!';
return;
def postChecks(L: List[int], x: int, index: int, **_):
if x in L:
assert index >= 0, 'Der Algorithmus sollte nicht -1 zurückgeben.';
assert L[index] == x, 'Der Algorithmus hat den falschen Index bestimmt.';
else:
assert index == -1, 'Der Algorithmus sollte -1 zurückgeben.';
return;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ALGORITHM binary search
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@algorithmInfos(name='Binärsuchalgorithmus', outputnames='index', checks=True, metrics=True, preChecks=preChecks, postChecks=postChecks)
def BinarySearch(L: List[int], x: int) -> int:
'''
Inputs: L = Liste von Zahlen, x = Zahl.
Annahme: L sei aufsteigend sortiert.
Outputs: Position von x in L, sonst 1 wenn x nicht in L.
'''
if len(L) == 0:
logDebug('x nicht in L');
return -1;
AddToCounter();
m = math.floor(len(L)/2);
if L[m] == x:
logDebug('x in Position m gefunden');
return m;
elif x < L[m]:
logDebug('Suche in linker Hälfte fortsetzen.');
index = BinarySearch(L=L[:m], x=x);
return index;
else: # x > L[m]
logDebug('Suche in rechter Hälfte fortsetzen.');
index = BinarySearch(L=L[m+1:], x=x);
if index >= 0:
index += (m + 1); # NOTE: muss Indexwert kompensieren
return index;