ads2_2022/code/rust/src/graphs/tarjan.rs

177 lines
4.6 KiB
Rust
Raw Normal View History

// ----------------------------------------------------------------
// IMPORTS
// ----------------------------------------------------------------
use std::fmt::Display;
use std::hash::Hash;
use std::collections::HashMap;
use crate::core::utils;
use crate::stacks::stack::Stack;
use crate::graphs::graph::Graph;
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// CONSTANTS
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#[derive(Clone, Copy, PartialEq)]
enum State {
UNTOUCHED,
PENDING,
FINISHED,
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// METHOD Tarjan Algorithm
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// # Tarjan Algorithm #
/// Runs the Tarjan-Algorithm to compute the strongly connected components.
pub fn tarjan_algorithm<T>(gph: &Graph<T>) -> Vec<Vec<T>>
where T: Eq + Hash + Clone + Display
{
let mut ctx = Context::new(&gph);
for u in gph.nodes.iter() {
tarjan_visit(gph, u, &mut ctx);
}
return ctx.components;
}
/// recursive depth-first search algorithm to compute components
fn tarjan_visit<T>(gph: &Graph<T>, v: &T, ctx: &mut Context<T>)
where T: Eq + Hash + Clone + Display
{
if !(ctx.get_state(v) == State::UNTOUCHED) {
return;
}
ctx.max_index += 1;
ctx.push(v);
ctx.set_root(v, ctx.max_index);
ctx.set_index(v, ctx.max_index);
ctx.set_state(v, State::PENDING);
// depth first search:
for u in gph.successors(&v) {
tarjan_visit(gph, &u, ctx);
// remains relevant for v, provided u still in Stack:
if ctx.stack.elements.contains(&u) {
let root = utils::min(
ctx.get_root(&u),
ctx.get_root(v)
);
ctx.set_root(v, root);
}
}
ctx.set_state(v, State::FINISHED);
if ctx.get_index(v) == ctx.get_root(v) {
let mut component: Vec<T> = Vec::new();
loop {
let u = ctx.top();
ctx.pop();
component.push(u.clone());
if u == *v {
break;
}
}
ctx.components.push(component);
}
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// AUXILIARY context variables for algorithm
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#[derive(Clone, Copy)]
struct NodeInformation {
root: usize,
index: usize,
state: State,
}
struct Context<T> {
stack: Stack<T>,
max_index: usize,
infos: HashMap<T, NodeInformation>,
components: Vec<Vec<T>>,
}
impl<T> Context<T>
where T: Eq + Hash + Clone + Display
{
fn new(gph: &Graph<T>) -> Context<T> {
let mut infos = HashMap::<T, NodeInformation>::new();
for u in gph.nodes.iter() {
infos.entry(u.clone()).or_insert(NodeInformation::new());
}
return Context {
stack: Stack::new(),
max_index: 0,
infos: infos,
components: vec![],
};
}
fn push(self: &mut Self, u: &T) {
self.stack.push(u.clone());
}
fn top(self: &mut Self) -> T {
return self.stack.top();
}
fn pop(self: &mut Self) -> T {
return self.stack.pop();
}
fn update_infos(self: &mut Self, u: &T, info: NodeInformation) {
self.infos.insert(u.clone(), info);
}
fn set_state(self: &mut Self, u: &T, state: State) {
let mut info = *self.infos.get(u).unwrap();
info.state = state;
self.update_infos(u, info);
}
fn set_root(self: &mut Self, u: &T, root: usize) {
let mut info = *self.infos.get(u).unwrap();
info.root = root;
self.update_infos(u, info);
}
fn set_index(self: &mut Self, u: &T, index: usize) {
let mut info = *self.infos.get(u).unwrap();
info.index = index;
self.update_infos(u, info);
}
fn get_state(self: &mut Self, u: &T) -> State {
let info = *self.infos.get(u).unwrap();
return info.state;
}
fn get_root(self: &mut Self, u: &T) -> usize {
let info = *self.infos.get(u).unwrap();
return info.root;
}
fn get_index(self: &mut Self, u: &T) -> usize {
let info = *self.infos.get(u).unwrap();
return info.index;
}
}
impl NodeInformation {
fn new() -> NodeInformation {
return NodeInformation {
root: 0,
index: 0,
state: State::UNTOUCHED,
};
}
}