master > master: code py - bei output Sortierung rückgängig machen

This commit is contained in:
RD 2022-06-14 10:09:21 +02:00
parent 828000a2ac
commit 304b8315f3
2 changed files with 51 additions and 26 deletions

View File

@ -9,6 +9,7 @@ from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from models.generated.config import *;
from src.core.utils import *;
from src.models.rucksack import *;
from src.models.stacks import *;
from src.algorithms.rucksack.display import *;
@ -43,10 +44,11 @@ def rucksack_greedy_algorithm(
'''
# sortiere daten:
order = resort_by_value_per_weight(weights=weights, values=values, items=items);
uorder = iperm(order);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr = display_order(order=order, weights=weights, values=values, items=items, one_based=True);
repr = display_order(order=order, weights=weights[uorder], values=values[uorder], items=items[uorder], one_based=True);
print('');
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
print('');
@ -57,21 +59,19 @@ def rucksack_greedy_algorithm(
n = len(weights);
weight_total = 0;
vector = [ 0 for _ in range(n) ];
rucksack = [];
for i in range(n):
# füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke
if weight_total + weights[i] <= capacity:
weight_total += weights[i];
rucksack.append(i);
vector[i] = 1;
# sonst abbrechen. Falls Bruchteile erlaubt, füge einen Bruchteil des i. Items hinzu
else:
if fractional:
rucksack.append(i);
vector[i] = (capacity - weight_total)/weights[i];
break;
# Aspekte der Lösung speichern:
rucksack = [i for i, v in enumerate(vector) if v > 0]; # Indexes von Items im Rucksack
soln = Solution(
vector = vector,
items = items[rucksack].tolist(),
@ -81,13 +81,19 @@ def rucksack_greedy_algorithm(
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
expr_value = display_sum(vector=soln.vector, values=values);
expr_weight = display_sum(vector=soln.vector, values=weights);
print('\x1b[1mEingeschätztes Maximum\x1b[0m');
# Umsortierung rückgängig machen:
vector = [ soln.vector[i] for i in order ];
rucksack = [ uorder[r] for r in rucksack ];
permute_data(weights=weights, values=values, items=items, perm=uorder);
# Ausdrücke bestimmen:
expr_value = display_sum(vector=vector, values=values);
expr_weight = display_sum(vector=vector, values=weights);
print('\x1b[1mEingeschätzte Lösung\x1b[0m');
print('');
print(f'Rucksack: {", ".join(soln.items)}.');
if fractional:
print(f'Vector: {soln.vector_support}');
print(f'Mask: {soln.vector}');
print(f' ---> {vector} (unter urspr. Sortierung)');
print(f'Rucksack: {", ".join(items[rucksack])}.');
print(f'max. Value ≈ {expr_value}');
print(f'∑ Weights = {expr_weight}');
print('');
@ -112,10 +118,11 @@ def rucksack_branch_and_bound_algorithm(
'''
order = resort_by_value_per_weight(weights=weights, values=values, items=items);
uorder = iperm(order);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr = display_order(order=order, weights=weights, values=values, items=items, one_based=True);
repr = display_order(order=order, weights=weights[uorder], values=values[uorder], items=items[uorder], one_based=True);
print('');
print('\x1b[1mRucksack Problem - Branch & Bound\x1b[0m');
print('');
@ -158,14 +165,22 @@ def rucksack_branch_and_bound_algorithm(
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
expr_value = display_sum(vector=soln.vector, values=values);
expr_weight = display_sum(vector=soln.vector, values=weights);
# NOTE: Information in Tabelle gemäß permutierten Daten:
repr = display_branch_and_bound(values=values, steps=logged_steps);
print('\x1b[1mMaximum\x1b[0m');
# Umsortierung rückgängig machen:
vector = [ soln.vector[i] for i in order ];
rucksack = [ uorder[r] for r in rucksack ];
permute_data(weights=weights, values=values, items=items, perm=uorder);
# Ausdrücke bestimmen:
expr_value = display_sum(vector=vector, values=values);
expr_weight = display_sum(vector=vector, values=weights);
print('\x1b[1mLösung\x1b[0m');
print('');
print(repr);
print('');
print(f'Rucksack: {", ".join(soln.items)}.');
print(f'Mask: {soln.vector}');
print(f' ---> {vector} (unter urspr. Sortierung)');
print(f'Rucksack: {", ".join(items[rucksack])}.');
print(f'max. Value ≈ {expr_value}');
print(f'∑ Weights = {expr_weight}');
print('');
@ -188,11 +203,20 @@ def resort_by_value_per_weight(
n = len(weights);
indexes = list(range(n));
order = sorted(indexes, key=lambda i: -values[i]/weights[i]);
weights[:] = weights[order];
values[:] = values[order];
items[:] = items[order];
permute_data(weights=weights, values=values, items=items, perm=order);
return order;
def permute_data(
weights: np.ndarray,
values: np.ndarray,
items: np.ndarray,
perm: List[int],
):
weights[:] = weights[perm];
values[:] = values[perm];
items[:] = items[perm];
return;
def estimate_lower_bound(
mask: Mask,
capacity: float,

View File

@ -9,7 +9,6 @@ from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.core.utils import *;
from src.models.stacks import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -33,18 +32,16 @@ def display_order(
items: np.ndarray,
one_based: bool = False,
) -> str:
index = range(len(order));
uorder = iperm(order);
table = pd.DataFrame({
'items': items,
'index': index,
'order': order,
'values': values,
'weights': weights,
'u': (values/weights),
}, index=index) \
.reindex(uorder);
}) \
.reset_index(drop=True);
if one_based:
table['index'] += 1;
table['order'] += 1;
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
pd.DataFrame(table),
@ -62,13 +59,17 @@ def display_order(
def display_sum(
vector: Union[List[int], List[float]],
values: np.ndarray,
as_maximum: bool = True,
) -> str:
value = sum([ u*x for u, x in zip(vector,values)]);
expr = '+'.join([
f'{x:g}' if u == 1 else f'{Fraction(str(u))}·{x:g}'
for u, x in zip(vector,values) if u > 0
]);
return f'{value:g} (={expr})';
if as_maximum:
return f'{value:g} = {expr}';
else:
return f'-{value:g} = -({expr})';
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display result of branch and bound
@ -86,7 +87,7 @@ def display_branch_and_bound(
rows.append((f'{lb_estimate:g}', f'{lb:g}', S));
else:
used_vectors.append(u)
rows.append((f'{lb_estimate:g}', display_sum(vector=u, values=values), S));
rows.append((f'{lb_estimate:g}', display_sum(vector=u, values=values, as_maximum=False), S));
table = pd.DataFrame(rows) \
.rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'S'}) \