master > master: code py - verbesserte Darstellung + »korrekte« Behandlung von Reihenfolgen
- im Kurs wird die Permutation nur für Greedy-Berechnungen angewandt - die Reihenfolge der Items in der Hauptberechnung bei B&B bleibt wie bei Angaben
This commit is contained in:
parent
e3c3bbec37
commit
3b8f80cff9
@ -78,18 +78,20 @@
|
|||||||
- &rucksack_1
|
- &rucksack_1
|
||||||
name: RUCKSACK
|
name: RUCKSACK
|
||||||
algorithm: GREEDY
|
algorithm: GREEDY
|
||||||
allow-fractional: true
|
allow-fractional: false
|
||||||
capacity: 10
|
max-cost: 10
|
||||||
items: [a, b, c, d, e]
|
items: [a, b, c, d, e]
|
||||||
weights:
|
costs:
|
||||||
[3, 4, 5, 2, 1]
|
[3, 4, 5, 2, 1]
|
||||||
values:
|
values:
|
||||||
[8, 7, 8, 3, 2]
|
[8, 7, 8, 3, 2]
|
||||||
|
- <<: *rucksack_1
|
||||||
|
allow-fractional: true
|
||||||
- <<: *rucksack_1
|
- <<: *rucksack_1
|
||||||
algorithm: BRANCH-AND-BOUND
|
algorithm: BRANCH-AND-BOUND
|
||||||
- name: RUCKSACK
|
- name: RUCKSACK
|
||||||
algorithm: BRANCH-AND-BOUND
|
algorithm: BRANCH-AND-BOUND
|
||||||
capacity: 90
|
max-cost: 90
|
||||||
items: [
|
items: [
|
||||||
'Sonnenblumenkerne',
|
'Sonnenblumenkerne',
|
||||||
'Buchweizen',
|
'Buchweizen',
|
||||||
@ -97,7 +99,7 @@
|
|||||||
'Hirse',
|
'Hirse',
|
||||||
'Sellerie',
|
'Sellerie',
|
||||||
]
|
]
|
||||||
weights:
|
costs:
|
||||||
[30, 10, 50, 10, 80]
|
[30, 10, 50, 10, 80]
|
||||||
values:
|
values:
|
||||||
[17, 14, 17, 5, 25]
|
[17, 14, 17, 5, 25]
|
||||||
|
14
code/python/docs/commands/Models/CommandRucksack.md
Normal file
14
code/python/docs/commands/Models/CommandRucksack.md
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# CommandRucksack
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
Name | Type | Description | Notes
|
||||||
|
------------ | ------------- | ------------- | -------------
|
||||||
|
**algorithm** | [**EnumRucksackAlgorithm**](EnumRucksackAlgorithm.md) | | [default to null]
|
||||||
|
**allowMinusfractional** | [**Boolean**](boolean.md) | | [optional] [default to false]
|
||||||
|
**maxMinuscost** | [**BigDecimal**](number.md) | Upper bound for total cost of rucksack. | [default to null]
|
||||||
|
**costs** | [**List**](number.md) | Array of cost for each item (e.g. volume, weight, price, time, etc.). | [default to null]
|
||||||
|
**values** | [**List**](number.md) | Value extracted from each item (e.g. energy, profit, etc.). | [default to null]
|
||||||
|
**items** | [**List**](string.md) | Optional names of the items (if empty, defaults to 1-based indexes). | [optional] [default to []]
|
||||||
|
|
||||||
|
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||||
|
|
@ -5,7 +5,7 @@ Name | Type | Description | Notes
|
|||||||
------------ | ------------- | ------------- | -------------
|
------------ | ------------- | ------------- | -------------
|
||||||
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
|
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
|
||||||
**dist** | [**List**](array.md) | | [default to null]
|
**dist** | [**List**](array.md) | | [default to null]
|
||||||
**optimise** | [**EnumTSPOptimise**](EnumTSPOptimise.md) | | [default to null]
|
**optimise** | [**EnumOptimiseMode**](EnumOptimiseMode.md) | | [default to null]
|
||||||
|
|
||||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
# EnumTSPOptimise
|
# EnumOptimiseMode
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
Name | Type | Description | Notes
|
Name | Type | Description | Notes
|
@ -0,0 +1,8 @@
|
|||||||
|
# EnumRucksackAlgorithm
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
Name | Type | Description | Notes
|
||||||
|
------------ | ------------- | ------------- | -------------
|
||||||
|
|
||||||
|
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||||
|
|
@ -14,10 +14,12 @@ Class | Method | HTTP request | Description
|
|||||||
|
|
||||||
- [Command](.//Models/Command.md)
|
- [Command](.//Models/Command.md)
|
||||||
- [CommandHirschberg](.//Models/CommandHirschberg.md)
|
- [CommandHirschberg](.//Models/CommandHirschberg.md)
|
||||||
|
- [CommandRucksack](.//Models/CommandRucksack.md)
|
||||||
- [CommandTarjan](.//Models/CommandTarjan.md)
|
- [CommandTarjan](.//Models/CommandTarjan.md)
|
||||||
- [CommandTsp](.//Models/CommandTsp.md)
|
- [CommandTsp](.//Models/CommandTsp.md)
|
||||||
- [EnumAlgorithmNames](.//Models/EnumAlgorithmNames.md)
|
- [EnumAlgorithmNames](.//Models/EnumAlgorithmNames.md)
|
||||||
- [EnumTSPOptimise](.//Models/EnumTSPOptimise.md)
|
- [EnumOptimiseMode](.//Models/EnumOptimiseMode.md)
|
||||||
|
- [EnumRucksackAlgorithm](.//Models/EnumRucksackAlgorithm.md)
|
||||||
|
|
||||||
|
|
||||||
<a name="documentation-for-authorization"></a>
|
<a name="documentation-for-authorization"></a>
|
||||||
|
@ -8,6 +8,7 @@ Name | Type | Description | Notes
|
|||||||
**tarjan** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
|
**tarjan** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
|
||||||
**tsp** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
|
**tsp** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
|
||||||
**hirschberg** | [**AppOptions_hirschberg**](AppOptions_hirschberg.md) | | [default to null]
|
**hirschberg** | [**AppOptions_hirschberg**](AppOptions_hirschberg.md) | | [default to null]
|
||||||
|
**rucksack** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [optional] [default to null]
|
||||||
|
|
||||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||||
|
|
||||||
|
@ -116,8 +116,8 @@ components:
|
|||||||
type: object
|
type: object
|
||||||
required:
|
required:
|
||||||
- algorithm
|
- algorithm
|
||||||
- capacity
|
- max-cost
|
||||||
- weights
|
- costs
|
||||||
- values
|
- values
|
||||||
properties:
|
properties:
|
||||||
algorithm:
|
algorithm:
|
||||||
@ -125,18 +125,18 @@ components:
|
|||||||
allow-fractional:
|
allow-fractional:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
capacity:
|
max-cost:
|
||||||
description: Maximum weight/volumed allowed in rucksack.
|
description: Upper bound for total cost of rucksack.
|
||||||
type: number
|
type: number
|
||||||
minimum: 0
|
minimum: 0
|
||||||
weights:
|
costs:
|
||||||
description: Weights or volumes of each item.
|
description: Array of cost for each item (e.g. volume, weight, price, time, etc.).
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
type: number
|
type: number
|
||||||
exclusiveMinimum: 0
|
exclusiveMinimum: 0
|
||||||
values:
|
values:
|
||||||
description: Value extracted from each item (e.g. monetary).
|
description: Value extracted from each item (e.g. energy, profit, etc.).
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
type: number
|
type: number
|
||||||
|
@ -28,8 +28,8 @@ __all__ = [
|
|||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
def rucksack_greedy_algorithm(
|
def rucksack_greedy_algorithm(
|
||||||
capacity: float,
|
max_cost: float,
|
||||||
weights: np.ndarray,
|
costs: np.ndarray,
|
||||||
values: np.ndarray,
|
values: np.ndarray,
|
||||||
items: np.ndarray,
|
items: np.ndarray,
|
||||||
fractional: bool,
|
fractional: bool,
|
||||||
@ -43,12 +43,11 @@ def rucksack_greedy_algorithm(
|
|||||||
eine obere Schranke des maximalen Wertes beim Originalproblem.
|
eine obere Schranke des maximalen Wertes beim Originalproblem.
|
||||||
'''
|
'''
|
||||||
# sortiere daten:
|
# sortiere daten:
|
||||||
order = resort_by_value_per_weight(weights=weights, values=values, items=items);
|
order = get_sort_order(costs=costs, values=values);
|
||||||
uorder = iperm(order);
|
|
||||||
|
|
||||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||||
if verbose:
|
if verbose:
|
||||||
repr = display_order(order=order, weights=weights[uorder], values=values[uorder], items=items[uorder], one_based=True);
|
repr = display_order(order=order, costs=costs, values=values, items=items, one_based=True);
|
||||||
print('');
|
print('');
|
||||||
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
|
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
|
||||||
print('');
|
print('');
|
||||||
@ -56,46 +55,39 @@ def rucksack_greedy_algorithm(
|
|||||||
print('');
|
print('');
|
||||||
|
|
||||||
# führe greedy aus:
|
# führe greedy aus:
|
||||||
n = len(weights);
|
n = len(costs);
|
||||||
weight_total = 0;
|
cost_total = 0;
|
||||||
vector = [ 0 for _ in range(n) ];
|
vector = [ 0 for _ in range(n) ];
|
||||||
for i in range(n):
|
for i in order:
|
||||||
# füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke
|
# füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke
|
||||||
if weight_total + weights[i] <= capacity:
|
if cost_total + costs[i] <= max_cost:
|
||||||
weight_total += weights[i];
|
cost_total += costs[i];
|
||||||
vector[i] = 1;
|
vector[i] = 1;
|
||||||
# sonst abbrechen. Falls Bruchteile erlaubt, füge einen Bruchteil des i. Items hinzu
|
# falls Bruchteile erlaubt sind, füge einen Bruchteil des i. Items hinzu und abbrechen
|
||||||
else:
|
elif fractional:
|
||||||
if fractional:
|
vector[i] = (max_cost - cost_total)/costs[i];
|
||||||
vector[i] = (capacity - weight_total)/weights[i];
|
|
||||||
break;
|
break;
|
||||||
|
# ansonsten weiter machen:
|
||||||
|
else:
|
||||||
|
continue;
|
||||||
|
|
||||||
# Aspekte der Lösung speichern:
|
# Aspekte der Lösung speichern:
|
||||||
rucksack = [i for i, v in enumerate(vector) if v > 0]; # Indexes von Items im Rucksack
|
rucksack = [i for i, v in enumerate(vector) if v > 0]; # Indexes von Items im Rucksack
|
||||||
soln = Solution(
|
soln = Solution(
|
||||||
vector = vector,
|
vector = vector,
|
||||||
items = items[rucksack].tolist(),
|
items = items[rucksack].tolist(),
|
||||||
weights = weights[rucksack].tolist(),
|
costs = costs[rucksack].tolist(),
|
||||||
values = values[rucksack].tolist(),
|
values = values[rucksack].tolist(),
|
||||||
);
|
);
|
||||||
|
|
||||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||||
if verbose:
|
if verbose:
|
||||||
# Umsortierung rückgängig machen:
|
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]);
|
||||||
vector = [ soln.vector[i] for i in order ];
|
|
||||||
rucksack = sorted([ uorder[r] for r in rucksack ]);
|
|
||||||
permute_data(weights=weights, values=values, items=items, perm=uorder);
|
|
||||||
# Ausdrücke bestimmen:
|
|
||||||
expr_value = display_sum(vector=vector, values=values);
|
|
||||||
expr_weight = display_sum(vector=vector, values=weights);
|
|
||||||
print('\x1b[1mEingeschätzte Lösung\x1b[0m');
|
print('\x1b[1mEingeschätzte Lösung\x1b[0m');
|
||||||
print('');
|
print('');
|
||||||
if fractional:
|
print(f'Mask: {soln.vector}');
|
||||||
print(f'Mask: {soln.vector}');
|
print('Rucksack:')
|
||||||
print(f' ---> {vector} (unter urspr. Sortierung)');
|
print(repr_rucksack);
|
||||||
print(f'Rucksack: {", ".join(items[rucksack])}.');
|
|
||||||
print(f'max. Value ≈ {expr_value}');
|
|
||||||
print(f'∑ Weights = {expr_weight}');
|
|
||||||
print('');
|
print('');
|
||||||
|
|
||||||
# Lösung ausgeben
|
# Lösung ausgeben
|
||||||
@ -106,8 +98,8 @@ def rucksack_greedy_algorithm(
|
|||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
def rucksack_branch_and_bound_algorithm(
|
def rucksack_branch_and_bound_algorithm(
|
||||||
capacity: float,
|
max_cost: float,
|
||||||
weights: np.ndarray,
|
costs: np.ndarray,
|
||||||
values: np.ndarray,
|
values: np.ndarray,
|
||||||
items: np.ndarray,
|
items: np.ndarray,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
@ -117,12 +109,11 @@ def rucksack_branch_and_bound_algorithm(
|
|||||||
unter Rücksicht der Kapizitätsschranke exakt und effizienter bestimmt.
|
unter Rücksicht der Kapizitätsschranke exakt und effizienter bestimmt.
|
||||||
'''
|
'''
|
||||||
|
|
||||||
order = resort_by_value_per_weight(weights=weights, values=values, items=items);
|
order = get_sort_order(costs=costs, values=values);
|
||||||
uorder = iperm(order);
|
|
||||||
|
|
||||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||||
if verbose:
|
if verbose:
|
||||||
repr = display_order(order=order, weights=weights[uorder], values=values[uorder], items=items[uorder], one_based=True);
|
repr = display_order(order=order, costs=costs, values=values, items=items, one_based=True);
|
||||||
print('');
|
print('');
|
||||||
print('\x1b[1mRucksack Problem - Branch & Bound\x1b[0m');
|
print('\x1b[1mRucksack Problem - Branch & Bound\x1b[0m');
|
||||||
print('');
|
print('');
|
||||||
@ -130,12 +121,12 @@ def rucksack_branch_and_bound_algorithm(
|
|||||||
print('');
|
print('');
|
||||||
|
|
||||||
logged_steps = [];
|
logged_steps = [];
|
||||||
vector = empty_mask(n=len(weights));
|
vector = empty_mask(n=len(costs));
|
||||||
lb_estimate = np.inf;
|
lb_estimate = np.inf;
|
||||||
S = Stack();
|
S = Stack();
|
||||||
S.push(vector);
|
S.push(vector);
|
||||||
while not S.empty():
|
while not S.empty():
|
||||||
lb, u, can_add_all, can_add_none = estimate_lower_bound(mask=S.top(), capacity=capacity, weights=weights, values=values, items=items);
|
lb, u, can_add_all, can_add_none = estimate_lower_bound(mask=S.top(), max_cost=max_cost, costs=costs, values=values, items=items);
|
||||||
if verbose:
|
if verbose:
|
||||||
logged_steps.append((lb_estimate, lb, str(S), u, can_add_all, can_add_none));
|
logged_steps.append((lb_estimate, lb, str(S), u, can_add_all, can_add_none));
|
||||||
# Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert:
|
# Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert:
|
||||||
@ -155,7 +146,7 @@ def rucksack_branch_and_bound_algorithm(
|
|||||||
B, C = A.split();
|
B, C = A.split();
|
||||||
S.push(B);
|
S.push(B);
|
||||||
# Nur dann C auf Stack legen, wenn mind. eine Möglichkeit in C die Kapazitätsschranke erfüllt:
|
# Nur dann C auf Stack legen, wenn mind. eine Möglichkeit in C die Kapazitätsschranke erfüllt:
|
||||||
if sum(weights[C.indexes_one]) <= capacity:
|
if sum(costs[C.indexes_one]) <= max_cost:
|
||||||
S.push(C);
|
S.push(C);
|
||||||
|
|
||||||
# Aspekte der Lösung speichern
|
# Aspekte der Lösung speichern
|
||||||
@ -164,29 +155,20 @@ def rucksack_branch_and_bound_algorithm(
|
|||||||
vector = vector.decision,
|
vector = vector.decision,
|
||||||
items = items[rucksack].tolist(),
|
items = items[rucksack].tolist(),
|
||||||
values = values[rucksack].tolist(),
|
values = values[rucksack].tolist(),
|
||||||
weights = weights[rucksack].tolist(),
|
costs = costs[rucksack].tolist(),
|
||||||
);
|
);
|
||||||
|
|
||||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||||
if verbose:
|
if verbose:
|
||||||
# NOTE: Information in Tabelle gemäß permutierten Daten:
|
repr = display_branch_and_bound(values=values, steps=logged_steps, order=order);
|
||||||
repr = display_branch_and_bound(values=values, steps=logged_steps);
|
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]);
|
||||||
# Umsortierung rückgängig machen:
|
|
||||||
vector = [ soln.vector[i] for i in order ];
|
|
||||||
rucksack = sorted([ uorder[r] for r in rucksack ]);
|
|
||||||
permute_data(weights=weights, values=values, items=items, perm=uorder);
|
|
||||||
# Ausdrücke bestimmen:
|
|
||||||
expr_value = display_sum(vector=vector, values=values);
|
|
||||||
expr_weight = display_sum(vector=vector, values=weights);
|
|
||||||
print('\x1b[1mLösung\x1b[0m');
|
print('\x1b[1mLösung\x1b[0m');
|
||||||
print('');
|
print('');
|
||||||
print(repr);
|
print(repr);
|
||||||
print('');
|
print('');
|
||||||
print(f'Mask: {soln.vector}');
|
print(f'Mask: {soln.vector}');
|
||||||
print(f' ---> {vector} (unter urspr. Sortierung)');
|
print('Rucksack:');
|
||||||
print(f'Rucksack: {", ".join(items[rucksack])}.');
|
print(repr_rucksack);
|
||||||
print(f'max. Value ≈ {expr_value}');
|
|
||||||
print(f'∑ Weights = {expr_weight}');
|
|
||||||
print('');
|
print('');
|
||||||
|
|
||||||
# Lösung ausgeben
|
# Lösung ausgeben
|
||||||
@ -196,35 +178,19 @@ def rucksack_branch_and_bound_algorithm(
|
|||||||
# AUXILIARY METHOD resort
|
# AUXILIARY METHOD resort
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
def resort_by_value_per_weight(
|
def get_sort_order(costs: np.ndarray, values: np.ndarray) -> List[int]:
|
||||||
weights: np.ndarray,
|
|
||||||
values: np.ndarray,
|
|
||||||
items: np.ndarray,
|
|
||||||
) -> List[int]:
|
|
||||||
'''
|
'''
|
||||||
Sortiert Daten absteigend nach values/weights.
|
Sortiert Daten absteigend nach values/costs.
|
||||||
'''
|
'''
|
||||||
n = len(weights);
|
n = len(costs);
|
||||||
indexes = list(range(n));
|
indexes = list(range(n));
|
||||||
order = sorted(indexes, key=lambda i: -values[i]/weights[i]);
|
order = sorted(indexes, key=lambda i: -values[i]/costs[i]);
|
||||||
permute_data(weights=weights, values=values, items=items, perm=order);
|
|
||||||
return order;
|
return order;
|
||||||
|
|
||||||
def permute_data(
|
|
||||||
weights: np.ndarray,
|
|
||||||
values: np.ndarray,
|
|
||||||
items: np.ndarray,
|
|
||||||
perm: List[int],
|
|
||||||
):
|
|
||||||
weights[:] = weights[perm];
|
|
||||||
values[:] = values[perm];
|
|
||||||
items[:] = items[perm];
|
|
||||||
return;
|
|
||||||
|
|
||||||
def estimate_lower_bound(
|
def estimate_lower_bound(
|
||||||
mask: Mask,
|
mask: Mask,
|
||||||
capacity: float,
|
max_cost: float,
|
||||||
weights: np.ndarray,
|
costs: np.ndarray,
|
||||||
values: np.ndarray,
|
values: np.ndarray,
|
||||||
items: np.ndarray,
|
items: np.ndarray,
|
||||||
) -> Tuple[float, List[float], bool]:
|
) -> Tuple[float, List[float], bool]:
|
||||||
@ -243,19 +209,19 @@ def estimate_lower_bound(
|
|||||||
|
|
||||||
# Berechnungen bei Items mit bekanntem Status in Rucksack:
|
# Berechnungen bei Items mit bekanntem Status in Rucksack:
|
||||||
value_rucksack = sum(values[indexes_one]);
|
value_rucksack = sum(values[indexes_one]);
|
||||||
weight_rucksack = sum(weights[indexes_one]);
|
cost_rucksack = sum(costs[indexes_one]);
|
||||||
vector[indexes_one] = 1;
|
vector[indexes_one] = 1;
|
||||||
|
|
||||||
# Für Rest des Rucksacks (Items mit unbekanntem Status):
|
# Für Rest des Rucksacks (Items mit unbekanntem Status):
|
||||||
weight_rest = capacity - weight_rucksack;
|
cost_rest = max_cost - cost_rucksack;
|
||||||
can_add_all = False;
|
can_add_all = False;
|
||||||
can_add_none = False;
|
can_add_none = False;
|
||||||
# Prüfe, ob man als Lösung alles/nichts hinzufügen kann:
|
# Prüfe, ob man als Lösung alles/nichts hinzufügen kann:
|
||||||
if len(indexes_unset) > 0 and sum(weights[indexes_unset]) <= weight_rest:
|
if len(indexes_unset) > 0 and sum(costs[indexes_unset]) <= cost_rest:
|
||||||
can_add_all = True;
|
can_add_all = True;
|
||||||
vector[indexes_unset] = 1;
|
vector[indexes_unset] = 1;
|
||||||
value_rest = sum(values[indexes_unset]);
|
value_rest = sum(values[indexes_unset]);
|
||||||
elif len(indexes_unset) > 0 and min(weights[indexes_unset]) > weight_rest:
|
elif len(indexes_unset) > 0 and min(costs[indexes_unset]) > cost_rest:
|
||||||
can_add_none = True;
|
can_add_none = True;
|
||||||
vector[indexes_unset] = 0;
|
vector[indexes_unset] = 0;
|
||||||
value_rest = 0;
|
value_rest = 0;
|
||||||
@ -263,8 +229,8 @@ def estimate_lower_bound(
|
|||||||
# NOTE: Lösung ist eine Überschätzung des max-Wertes.
|
# NOTE: Lösung ist eine Überschätzung des max-Wertes.
|
||||||
else:
|
else:
|
||||||
soln_rest = rucksack_greedy_algorithm(
|
soln_rest = rucksack_greedy_algorithm(
|
||||||
capacity = weight_rest, # <- Kapazität = Restgewicht
|
max_cost = cost_rest, # <- Kapazität = Restgewicht
|
||||||
weights = weights[indexes_unset],
|
costs = costs[indexes_unset],
|
||||||
values = values[indexes_unset],
|
values = values[indexes_unset],
|
||||||
items = items[indexes_unset],
|
items = items[indexes_unset],
|
||||||
fractional = True,
|
fractional = True,
|
||||||
|
@ -17,8 +17,9 @@ from src.models.stacks import *;
|
|||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'display_order',
|
'display_order',
|
||||||
'display_sum',
|
'display_rucksack',
|
||||||
'display_branch_and_bound',
|
'display_branch_and_bound',
|
||||||
|
'display_sum',
|
||||||
];
|
];
|
||||||
|
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
@ -27,31 +28,88 @@ __all__ = [
|
|||||||
|
|
||||||
def display_order(
|
def display_order(
|
||||||
order: List[int],
|
order: List[int],
|
||||||
weights: np.ndarray,
|
costs: np.ndarray,
|
||||||
values: np.ndarray,
|
values: np.ndarray,
|
||||||
items: np.ndarray,
|
items: np.ndarray,
|
||||||
one_based: bool = False,
|
one_based: bool = False,
|
||||||
) -> str:
|
) -> str:
|
||||||
table = pd.DataFrame({
|
table = pd.DataFrame({
|
||||||
'items': items,
|
'items': items,
|
||||||
'order': order,
|
'order': order,
|
||||||
'values': values,
|
'values': values,
|
||||||
'weights': weights,
|
'costs': costs,
|
||||||
'u': (values/weights),
|
'u': (values/costs),
|
||||||
}) \
|
}) \
|
||||||
.reset_index(drop=True);
|
.reset_index(drop=True);
|
||||||
if one_based:
|
if one_based:
|
||||||
table['order'] += 1;
|
table['order'] += 1;
|
||||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||||
repr = tabulate(
|
repr = tabulate(
|
||||||
pd.DataFrame(table),
|
table,
|
||||||
headers=['item', 'greedy order', 'value', 'weight', 'value/weight'],
|
headers=['item', 'greedy order', 'value', 'cost', 'value/cost'],
|
||||||
showindex=False,
|
showindex=False,
|
||||||
colalign=('left', 'center', 'center', 'center', 'right'),
|
colalign=('left', 'center', 'center', 'center', 'right'),
|
||||||
tablefmt='rst'
|
tablefmt='rst'
|
||||||
);
|
);
|
||||||
return repr;
|
return repr;
|
||||||
|
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# METHOD display rucksack
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
def display_rucksack(
|
||||||
|
items: np.ndarray,
|
||||||
|
costs: np.ndarray,
|
||||||
|
values: np.ndarray,
|
||||||
|
) -> str:
|
||||||
|
table = pd.DataFrame({
|
||||||
|
'items': items.tolist() + ['----', '∑'],
|
||||||
|
'costs': costs.tolist() + ['', f'\x1b[92;1m{sum(costs)}\x1b[0m'],
|
||||||
|
'values': values.tolist() + ['', f'\x1b[92;1m{sum(values)}\x1b[0m'],
|
||||||
|
});
|
||||||
|
repr = tabulate(
|
||||||
|
table,
|
||||||
|
headers=['item', 'cost', 'value'],
|
||||||
|
showindex=False,
|
||||||
|
colalign=('left', 'center', 'center'),
|
||||||
|
tablefmt='rst'
|
||||||
|
);
|
||||||
|
return repr;
|
||||||
|
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# METHOD display result of branch and bound
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
def display_branch_and_bound(
|
||||||
|
values: np.ndarray,
|
||||||
|
steps: List[Tuple[float, float, Stack, List[float], bool, bool]],
|
||||||
|
order: Optional[List[int]] = None,
|
||||||
|
) -> str:
|
||||||
|
# füge Summen-Ausdrücke für Greedy-Alg hinzu:
|
||||||
|
rows = [];
|
||||||
|
used_vectors = [];
|
||||||
|
for lb_estimate, lb, S, u, can_add_all, can_add_none in steps:
|
||||||
|
pad = '1' if can_add_all else ('0' if can_add_none else '');
|
||||||
|
if u in used_vectors:
|
||||||
|
expr = f'{lb:g}';
|
||||||
|
else:
|
||||||
|
used_vectors.append(u)
|
||||||
|
expr = display_sum(vector=u, values=values, as_maximum=False, order=order);
|
||||||
|
rows.append((f'{lb_estimate:g}', expr, pad, S));
|
||||||
|
|
||||||
|
table = pd.DataFrame(rows) \
|
||||||
|
.rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'pad?', 3: 'S'}) \
|
||||||
|
.reset_index(drop=True);
|
||||||
|
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||||
|
repr = tabulate(
|
||||||
|
table,
|
||||||
|
headers=['b', 'g(TOP(S))', 'pad?', 'S'],
|
||||||
|
showindex=False,
|
||||||
|
colalign=('left', 'left', 'center', 'right'),
|
||||||
|
tablefmt='rst'
|
||||||
|
);
|
||||||
|
return repr;
|
||||||
|
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
# METHOD display sum
|
# METHOD display sum
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
@ -59,47 +117,18 @@ def display_order(
|
|||||||
def display_sum(
|
def display_sum(
|
||||||
vector: List[float],
|
vector: List[float],
|
||||||
values: np.ndarray,
|
values: np.ndarray,
|
||||||
|
order: Optional[List[int]] = None,
|
||||||
as_maximum: bool = True,
|
as_maximum: bool = True,
|
||||||
) -> str:
|
) -> str:
|
||||||
value = sum([ u*x for u, x in zip(vector,values)]);
|
parts = [ (u, x) for u, x in zip(vector, values)];
|
||||||
|
if not (order is None):
|
||||||
|
parts = [ parts[j] for j in order ];
|
||||||
|
value = sum([ u*x for u, x in parts]);
|
||||||
expr = '+'.join([
|
expr = '+'.join([
|
||||||
f'{x:g}' if u == 1 else f'{Fraction(str(u))}·{x:g}'
|
f'{x:g}' if u == 1 else f'{Fraction(str(u))}·{x:g}'
|
||||||
for u, x in zip(vector,values) if u > 0
|
for u, x in parts if u > 0
|
||||||
]);
|
]);
|
||||||
if as_maximum:
|
if as_maximum:
|
||||||
return f'{value:g} = {expr}';
|
return f'{value:g} = {expr}';
|
||||||
else:
|
else:
|
||||||
return f'-{value:g} = -({expr})';
|
return f'-{value:g} = -({expr})';
|
||||||
|
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
||||||
# METHOD display result of branch and bound
|
|
||||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
||||||
|
|
||||||
def display_branch_and_bound(
|
|
||||||
values: np.ndarray,
|
|
||||||
steps: List[Tuple[float, float, Stack, List[float], bool, bool]]
|
|
||||||
) -> str:
|
|
||||||
# füge Summen-Ausdrücke für Greedy-Alg hinzu:
|
|
||||||
rows = [];
|
|
||||||
used_vectors = [];
|
|
||||||
for lb_estimate, lb, S, u, can_add_all, can_add_none in steps:
|
|
||||||
pad = '1' if can_add_all else ('0' if can_add_none else '');
|
|
||||||
if u in used_vectors:
|
|
||||||
expr = f'{lb:g}';
|
|
||||||
else:
|
|
||||||
used_vectors.append(u)
|
|
||||||
expr = display_sum(vector=u, values=values, as_maximum=False);
|
|
||||||
rows.append((f'{lb_estimate:g}', expr, pad, S));
|
|
||||||
|
|
||||||
table = pd.DataFrame(rows) \
|
|
||||||
.rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'pad?', 3: 'S'}) \
|
|
||||||
.reset_index(drop=True);
|
|
||||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
|
||||||
repr = tabulate(
|
|
||||||
pd.DataFrame(table),
|
|
||||||
headers=['b', 'g(TOP(S))', 'pad?', 'S'],
|
|
||||||
showindex=False,
|
|
||||||
colalign=('left', 'left', 'center', 'right'),
|
|
||||||
tablefmt='rst'
|
|
||||||
);
|
|
||||||
return repr;
|
|
||||||
|
@ -27,15 +27,15 @@ __all__ = [
|
|||||||
|
|
||||||
@run_safely()
|
@run_safely()
|
||||||
def endpoint_rucksack(command: CommandRucksack) -> Result[CallResult, CallError]:
|
def endpoint_rucksack(command: CommandRucksack) -> Result[CallResult, CallError]:
|
||||||
n = len(command.weights);
|
n = len(command.costs);
|
||||||
assert len(command.values) == n, f'Number of weights must be {n}';
|
assert len(command.values) == n, 'Number of values and costs must coincide!';
|
||||||
assert len(command.items) in [0, n], f'Number of items must be 0 or {n}';
|
assert len(command.items) in [0, n], f'Number of items must be 0 or {n}!';
|
||||||
command.items = command.items or [ str(index + 1) for index in range(n) ];
|
command.items = command.items or [ str(index + 1) for index in range(n) ];
|
||||||
match command.algorithm:
|
match command.algorithm:
|
||||||
case EnumRucksackAlgorithm.greedy:
|
case EnumRucksackAlgorithm.greedy:
|
||||||
result = rucksack_greedy_algorithm(
|
result = rucksack_greedy_algorithm(
|
||||||
capacity = command.capacity,
|
max_cost = command.max_cost,
|
||||||
weights = np.asarray(command.weights[:]),
|
costs = np.asarray(command.costs[:]),
|
||||||
values = np.asarray(command.values[:]),
|
values = np.asarray(command.values[:]),
|
||||||
items = np.asarray(command.items[:]),
|
items = np.asarray(command.items[:]),
|
||||||
fractional = command.allow_fractional,
|
fractional = command.allow_fractional,
|
||||||
@ -43,8 +43,8 @@ def endpoint_rucksack(command: CommandRucksack) -> Result[CallResult, CallError]
|
|||||||
);
|
);
|
||||||
case EnumRucksackAlgorithm.branch_and_bound:
|
case EnumRucksackAlgorithm.branch_and_bound:
|
||||||
result = rucksack_branch_and_bound_algorithm(
|
result = rucksack_branch_and_bound_algorithm(
|
||||||
capacity = command.capacity,
|
max_cost = command.max_cost,
|
||||||
weights = np.asarray(command.weights[:]),
|
costs = np.asarray(command.costs[:]),
|
||||||
values = np.asarray(command.values[:]),
|
values = np.asarray(command.values[:]),
|
||||||
items = np.asarray(command.items[:]),
|
items = np.asarray(command.items[:]),
|
||||||
verbose = config.OPTIONS.rucksack.verbose,
|
verbose = config.OPTIONS.rucksack.verbose,
|
||||||
|
@ -24,10 +24,10 @@ __all__ = [
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class SolutionRaw():
|
class SolutionRaw():
|
||||||
vector: Union[List[int], List[float]] = field();
|
vector: List[float] = field();
|
||||||
items: List[str] = field();
|
items: List[str] = field();
|
||||||
values: List[float] = field(repr=False);
|
values: List[float] = field(repr=False);
|
||||||
weights: List[float] = field(repr=False);
|
costs: List[float] = field(repr=False);
|
||||||
|
|
||||||
class Solution(SolutionRaw):
|
class Solution(SolutionRaw):
|
||||||
@property
|
@property
|
||||||
@ -40,7 +40,7 @@ class Solution(SolutionRaw):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def total_weight(self) -> float:
|
def total_weight(self) -> float:
|
||||||
return sum([ self.vector[i]*x for (i, x) in zip(self.support, self.weights) ]);
|
return sum([ self.vector[i]*x for (i, x) in zip(self.support, self.costs) ]);
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def total_value(self) -> float:
|
def total_value(self) -> float:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user