master > master: code py - darstellung alignment von summen
This commit is contained in:
parent
efacd73e51
commit
48fb136436
@ -111,14 +111,16 @@ def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
|
||||
used_choices.append(step.choice);
|
||||
expr = display_sum(choice=step.choice, values=values, as_maximum=False, order=step.order, indexes=step.indexes);
|
||||
else:
|
||||
expr = f'{step.bound_subtree:g}';
|
||||
expr = '';
|
||||
bound_str = f'{step.bound:+g}';
|
||||
pad_str = ('' if step.pad == MaskValue.UNSET else step.pad.value);
|
||||
move_str = ('' if step.move == EnumBranchAndBoundMove.NONE else step.move.value);
|
||||
if i == index_soln:
|
||||
move_str = f'{move_str} *';
|
||||
bound_str = f'* \x1b[92;1m{bound_str}\x1b[0m';
|
||||
rows.append({
|
||||
'bound': f'{step.bound:+g}',
|
||||
'bound_subtree': expr,
|
||||
'bound': f'{bound_str}',
|
||||
'bound_subtree': f'{step.bound_subtree:g}',
|
||||
'bound_subtree_sum': expr,
|
||||
'stack': step.stack_str,
|
||||
'pad': f'\x1b[2m{pad_str}\x1b[0m',
|
||||
'move': f'\x1b[2m{move_str}\x1b[0m',
|
||||
@ -128,10 +130,10 @@ def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
|
||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||
repr = tabulate(
|
||||
table,
|
||||
headers=['bound', 'g(TOP(S))', 'S — stack', '\x1b[2mpad?\x1b[0m', '\x1b[2mmove\x1b[0m'],
|
||||
headers=['bound', 'g(TOP(S))', '', 'S — stack', '\x1b[2mpad?\x1b[0m', '\x1b[2mmove\x1b[0m'],
|
||||
showindex=False,
|
||||
colalign=('left', 'left', 'right', 'center', 'left'),
|
||||
tablefmt='rst'
|
||||
colalign=('right', 'right', 'left', 'right', 'center', 'left'),
|
||||
tablefmt='simple'
|
||||
);
|
||||
return repr;
|
||||
|
||||
@ -169,5 +171,5 @@ def display_sum(
|
||||
expr = '\x1b[2m+\x1b[0m'.join(map(render, parts));
|
||||
|
||||
if as_maximum:
|
||||
return f'{value:g} \x1b[2m=\x1b[0m {expr}';
|
||||
return f'-{value:g} \x1b[2m= -(\x1b[0m{expr}\x1b[2m)\x1b[0m';
|
||||
return f'\x1b[2m=\x1b[0m {expr}';
|
||||
return f'\x1b[2m= -(\x1b[0m{expr}\x1b[2m)\x1b[0m';
|
||||
|
Loading…
x
Reference in New Issue
Block a user