woche12 > master: code py - vorberechnungen gemäß modell
This commit is contained in:
parent
01ef8c5758
commit
c2cb11a141
@ -27,15 +27,28 @@ __all__ = [
|
|||||||
|
|
||||||
@run_safely()
|
@run_safely()
|
||||||
def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallError]:
|
def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallError]:
|
||||||
|
# Compute landscape (fitness fct + topology) + initial co-ordinates:
|
||||||
|
one_based = command.one_based;
|
||||||
landscape = Landscape(
|
landscape = Landscape(
|
||||||
values = command.landscape.values,
|
values = command.landscape.values,
|
||||||
|
labels = command.landscape.labels,
|
||||||
metric = command.landscape.neighbourhoods.metric,
|
metric = command.landscape.neighbourhoods.metric,
|
||||||
|
one_based = one_based,
|
||||||
);
|
);
|
||||||
|
if isinstance(command.coords_init, list):
|
||||||
|
coords_init = tuple(command.coords_init);
|
||||||
|
if one_based:
|
||||||
|
coords_init = tuple(xx - 1 for xx in coords_init);
|
||||||
|
assert len(coords_init) == landscape.dim, 'Dimension of initial co-ordinations inconsistent with landscape!';
|
||||||
|
else:
|
||||||
|
coords_init = landscape.coords_middle;
|
||||||
|
|
||||||
match command.algorithm:
|
match command.algorithm:
|
||||||
case EnumWalkMode.adaptive:
|
case EnumWalkMode.adaptive:
|
||||||
result = adaptive_walk_algorithm(
|
result = adaptive_walk_algorithm(
|
||||||
landscape = landscape,
|
landscape = landscape,
|
||||||
r = command.landscape.neighbourhoods.radius,
|
r = command.landscape.neighbourhoods.radius,
|
||||||
|
coords_init = coords_init,
|
||||||
optimise = command.optimise,
|
optimise = command.optimise,
|
||||||
verbose = config.OPTIONS.random_walk.verbose
|
verbose = config.OPTIONS.random_walk.verbose
|
||||||
);
|
);
|
||||||
@ -43,6 +56,7 @@ def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallE
|
|||||||
result = gradient_walk_algorithm(
|
result = gradient_walk_algorithm(
|
||||||
landscape = landscape,
|
landscape = landscape,
|
||||||
r = command.landscape.neighbourhoods.radius,
|
r = command.landscape.neighbourhoods.radius,
|
||||||
|
coords_init = coords_init,
|
||||||
optimise = command.optimise,
|
optimise = command.optimise,
|
||||||
verbose = config.OPTIONS.random_walk.verbose
|
verbose = config.OPTIONS.random_walk.verbose
|
||||||
);
|
);
|
||||||
@ -50,6 +64,8 @@ def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallE
|
|||||||
result = metropolis_walk_algorithm(
|
result = metropolis_walk_algorithm(
|
||||||
landscape = landscape,
|
landscape = landscape,
|
||||||
r = command.landscape.neighbourhoods.radius,
|
r = command.landscape.neighbourhoods.radius,
|
||||||
|
coords_init = coords_init,
|
||||||
|
T = command.temperature_init,
|
||||||
annealing = command.annealing,
|
annealing = command.annealing,
|
||||||
optimise = command.optimise,
|
optimise = command.optimise,
|
||||||
verbose = config.OPTIONS.random_walk.verbose
|
verbose = config.OPTIONS.random_walk.verbose
|
||||||
|
@ -27,16 +27,23 @@ __all__ = [
|
|||||||
|
|
||||||
class Landscape():
|
class Landscape():
|
||||||
_fct: np.ndarray;
|
_fct: np.ndarray;
|
||||||
|
_labels: list[str];
|
||||||
_metric: EnumLandscapeMetric;
|
_metric: EnumLandscapeMetric;
|
||||||
_radius: float;
|
_radius: float;
|
||||||
|
_one_based: bool;
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
values: DataTypeLandscapeValues,
|
values: DataTypeLandscapeValues,
|
||||||
|
labels: List[str],
|
||||||
metric: EnumLandscapeMetric = EnumLandscapeMetric.maximum,
|
metric: EnumLandscapeMetric = EnumLandscapeMetric.maximum,
|
||||||
|
one_based: bool = False,
|
||||||
):
|
):
|
||||||
self._fct = convert_to_nparray(values);
|
self._fct = convert_to_nparray(values);
|
||||||
|
assert len(labels) == self.dim, 'A label is required for each axis/dimension!';
|
||||||
|
self._labels = labels;
|
||||||
self._metric = metric;
|
self._metric = metric;
|
||||||
|
self._one_based = one_based;
|
||||||
return;
|
return;
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -47,14 +54,27 @@ class Landscape():
|
|||||||
def dim(self) -> int:
|
def dim(self) -> int:
|
||||||
return len(self._fct.shape);
|
return len(self._fct.shape);
|
||||||
|
|
||||||
|
@property
|
||||||
|
def coords_middle(self) -> tuple:
|
||||||
|
return tuple(math.floor(s/2) for s in self.shape);
|
||||||
|
|
||||||
def fitness(self, *x: int) -> float:
|
def fitness(self, *x: int) -> float:
|
||||||
return self._fct[x];
|
return self._fct[x];
|
||||||
|
|
||||||
|
def label(self, *x: int) -> str:
|
||||||
|
if self._one_based:
|
||||||
|
x = tuple(xx + 1 for xx in x);
|
||||||
|
expr = ','.join([ f'{name}{xx}' for name, xx in zip(self._labels, x)]);
|
||||||
|
if self.dim > 1:
|
||||||
|
expr = f'({expr})';
|
||||||
|
return expr;
|
||||||
|
|
||||||
def neighbourhood(self, *x: int, r: float, strict: bool = False) -> List[tuple]:
|
def neighbourhood(self, *x: int, r: float, strict: bool = False) -> List[tuple]:
|
||||||
|
r = int(r);
|
||||||
sides = [
|
sides = [
|
||||||
[ xx - j for j in range(1,r+1) if xx - j in range(s) ]
|
[ xx - j for j in range(1, r+1) if xx - j in range(s) ]
|
||||||
+ ([ xx ] if xx in range(s) else [])
|
+ ([ xx ] if xx in range(s) else [])
|
||||||
+ [ xx + j for j in range(1,r+1) if xx + j in range(s) ]
|
+ [ xx + j for j in range(1, r+1) if xx + j in range(s) ]
|
||||||
for xx, s in zip(x, self.shape)
|
for xx, s in zip(x, self.shape)
|
||||||
];
|
];
|
||||||
match self._metric:
|
match self._metric:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user