master > master: code py - fügte option hinzu, um auch 0-costs anzuzeigen
- Abdunkeln in Summen jetzt nicht bei Werten
This commit is contained in:
parent
2fceaa7d95
commit
d07a76ce5d
@ -30,3 +30,5 @@ options:
|
||||
- TREE
|
||||
rucksack:
|
||||
verbose: true
|
||||
show:
|
||||
- ALL-WEIGHTS
|
||||
|
@ -53,7 +53,7 @@ components:
|
||||
- tsp
|
||||
- tarjan
|
||||
- hirschberg
|
||||
- rucksack-branch-and-bound
|
||||
- rucksack
|
||||
properties:
|
||||
log-level:
|
||||
$ref: '#/components/schemas/EnumLogLevel'
|
||||
@ -117,12 +117,16 @@ components:
|
||||
default: []
|
||||
rucksack:
|
||||
type: object
|
||||
required:
|
||||
- verbose
|
||||
required: []
|
||||
properties:
|
||||
verbose:
|
||||
type: boolean
|
||||
default: false
|
||||
show:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/EnumRucksackShow'
|
||||
default: []
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum LogLevel
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -148,8 +152,17 @@ components:
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumHirschbergShow:
|
||||
description: |-
|
||||
Enumeration of verbosity options for Hirschberg
|
||||
Enumeration of display options for Hirschberg
|
||||
type: string
|
||||
enum:
|
||||
- TREE
|
||||
- ATOMS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum Rucksack - display options
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumRucksackShow:
|
||||
description: |-
|
||||
Enumeration of display options for the Rucksack problem
|
||||
type: string
|
||||
enum:
|
||||
- ALL-WEIGHTS
|
||||
|
@ -83,7 +83,7 @@ def rucksack_greedy_algorithm(
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack], choice=np.asarray(choice)[rucksack]);
|
||||
repr_rucksack = display_rucksack(items=items, costs=costs, values=values, choice=choice);
|
||||
print('\x1b[1mEingeschätzte Lösung\x1b[0m');
|
||||
print('');
|
||||
print(f'Mask: [{", ".join(map(str, soln.choice))}]');
|
||||
@ -173,7 +173,7 @@ def rucksack_branch_and_bound_algorithm(
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
repr = display_branch_and_bound(values=values, steps=logged_steps);
|
||||
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack], choice=np.asarray(mask.choice)[rucksack]);
|
||||
repr_rucksack = display_rucksack(items=items, costs=costs, values=values, choice=mask.choice);
|
||||
print(repr);
|
||||
print('');
|
||||
print('\x1b[1mLösung\x1b[0m');
|
||||
|
@ -9,6 +9,8 @@ from src.thirdparty.code import *;
|
||||
from src.thirdparty.maths import *;
|
||||
from src.thirdparty.types import *;
|
||||
|
||||
from src.setup import config;
|
||||
from models.generated.config import *;
|
||||
from src.models.stacks import *;
|
||||
from src.models.rucksack import *;
|
||||
|
||||
@ -62,9 +64,17 @@ def display_rucksack(
|
||||
items: np.ndarray,
|
||||
costs: np.ndarray,
|
||||
values: np.ndarray,
|
||||
choice: np.ndarray,
|
||||
choice: List[Fraction],
|
||||
) -> str:
|
||||
show_options = config.OPTIONS.rucksack.show;
|
||||
render = lambda r: f'{r:g}';
|
||||
choice = np.asarray(choice);
|
||||
rucksack = np.where(choice > 0);
|
||||
if not(EnumRucksackShow.all_weights in show_options):
|
||||
items = items[rucksack];
|
||||
costs = costs[rucksack];
|
||||
values = values[rucksack];
|
||||
choice = choice[rucksack];
|
||||
table = pd.DataFrame({
|
||||
'items': items.tolist() + ['----', '∑'],
|
||||
'nr': list(map(str, choice))
|
||||
@ -132,15 +142,22 @@ def display_sum(
|
||||
indexes: List[int] = [],
|
||||
as_maximum: bool = True,
|
||||
) -> str:
|
||||
show_options = config.OPTIONS.rucksack.show;
|
||||
show_all_weights = (EnumRucksackShow.all_weights in show_options);
|
||||
|
||||
def render(x: Tuple[bool, Fraction, float]):
|
||||
b, u, value = x;
|
||||
expr = f'\x1b[91m{value:g}\x1b[0m' if b else f'\x1b[2m{value:g}\x1b[0m';
|
||||
return expr if u == 1 else f'\x1b[4;2m{u}\x1b[0m\x1b[2m·\x1b[0m{expr}';
|
||||
expr = f'\x1b[91m{value:g}\x1b[0m' if b else f'\x1b[0m{value:g}\x1b[0m';
|
||||
if not show_all_weights and u == 1:
|
||||
return expr;
|
||||
return f'\x1b[2m{u}\x1b[0m\x1b[2m·\x1b[0m{expr}';
|
||||
|
||||
parts = [ (i in indexes, u, x) for i, (u, x) in enumerate(zip(choice, values)) ];
|
||||
if not (order is None):
|
||||
parts = [ parts[j] for j in order ];
|
||||
parts = list(filter(lambda x: x[1] > 0, parts));
|
||||
if not show_all_weights:
|
||||
parts = list(filter(lambda x: x[1] > 0, parts));
|
||||
|
||||
value = sum([ u*x for _, u, x in parts ]);
|
||||
expr = '\x1b[2m+\x1b[0m'.join(map(render, parts));
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user