Compare commits
3 Commits
6920944cdf
...
c0bc69450c
Author | SHA1 | Date | |
---|---|---|---|
c0bc69450c | |||
3e8b3c157d | |||
a83315e3e6 |
@ -1,12 +1,37 @@
|
||||
## Beispiel für Seminarwoche 9 (Blatt 8)
|
||||
## Beispiele für Seminarwoche 2 (Blatt 1)
|
||||
- name: TARJAN
|
||||
nodes: [a,b,c]
|
||||
edges: [[a, c], [c, a], [b, c]]
|
||||
- name: TARJAN
|
||||
nodes: [1, 2, 3, 4, 5, 6, 7, 8]
|
||||
edges: [
|
||||
[1, 2],
|
||||
[1, 3],
|
||||
[2, 4],
|
||||
[2, 5],
|
||||
[3, 5],
|
||||
[3, 6],
|
||||
[3, 8],
|
||||
[4, 5],
|
||||
[4, 7],
|
||||
[5, 1],
|
||||
[5, 8],
|
||||
[6, 8],
|
||||
[7, 8],
|
||||
[8, 6],
|
||||
]
|
||||
## Beispiele für Seminarwoche 9 (Blatt 8)
|
||||
- name: TSP
|
||||
dist: [
|
||||
dist: &ref_dist [
|
||||
[0, 7, 4, 3],
|
||||
[7, 0, 5, 6],
|
||||
[2, 5, 0, 5],
|
||||
[2, 7, 4, 0],
|
||||
]
|
||||
optimise: MIN
|
||||
- name: TSP
|
||||
dist: *ref_dist
|
||||
optimise: MAX
|
||||
# Beispiele für Seminarwoche 10 (Blatt 9)
|
||||
- name: HIRSCHBERG
|
||||
word1: 'happily ever after'
|
||||
|
@ -6,6 +6,8 @@ info:
|
||||
ADS2 an der Universität Leipzig (Sommersemester 2022)
|
||||
implementiert.
|
||||
options:
|
||||
tarjan:
|
||||
verbose: true
|
||||
tsp:
|
||||
verbose: true
|
||||
hirschberg:
|
||||
|
@ -17,8 +17,8 @@ from models.generated.config import *;
|
||||
from models.generated.commands import *;
|
||||
from src.core.log import *;
|
||||
from src.setup.config import *;
|
||||
from src.models.graphs.graph import *;
|
||||
from src.algorithms.tarjan.algorithms import *;
|
||||
from src.models.graphs import *;
|
||||
from src.algorithms.tarjan import *;
|
||||
from src.algorithms.tsp import *;
|
||||
from src.algorithms.hirschberg import *;
|
||||
|
||||
@ -34,6 +34,14 @@ from src.algorithms.hirschberg import *;
|
||||
|
||||
def enter():
|
||||
for command in COMMANDS:
|
||||
if isinstance(command, CommandTarjan):
|
||||
tarjan_algorithm(
|
||||
G = Graph(
|
||||
nodes=command.nodes,
|
||||
edges=list(map(tuple, command.edges)),
|
||||
),
|
||||
verbose = OPTIONS.tarjan.verbose
|
||||
);
|
||||
if isinstance(command, CommandTsp):
|
||||
tsp_algorithm(
|
||||
dist = np.asarray(command.dist, dtype=float),
|
||||
@ -45,7 +53,7 @@ def enter():
|
||||
X = command.word1,
|
||||
Y = command.word2,
|
||||
once = command.once,
|
||||
verb = OPTIONS.hirschberg.verbose,
|
||||
verbose = OPTIONS.hirschberg.verbose,
|
||||
show = OPTIONS.hirschberg.show,
|
||||
);
|
||||
return;
|
||||
|
@ -37,10 +37,19 @@ components:
|
||||
type: object
|
||||
required:
|
||||
- name
|
||||
- nodes
|
||||
- edges
|
||||
properties:
|
||||
<<: *ref_command_properties
|
||||
# required:
|
||||
# properties:
|
||||
nodes:
|
||||
type: array
|
||||
edges:
|
||||
type: array
|
||||
items:
|
||||
# $ref: '#/components/schemas/Edge'
|
||||
type: array
|
||||
minItems: 2
|
||||
maxItems: 2
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Command - Algorithm: TSP
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -51,6 +51,14 @@ components:
|
||||
- tsp
|
||||
- hirschberg
|
||||
properties:
|
||||
tarjan:
|
||||
type: object
|
||||
required:
|
||||
- verbose
|
||||
properties:
|
||||
verbose:
|
||||
type: boolean
|
||||
default: false
|
||||
tsp:
|
||||
type: object
|
||||
required:
|
||||
|
@ -31,7 +31,7 @@ __all__ = [
|
||||
def simple_algorithm(
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
verbose: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Tuple[str, str]:
|
||||
'''
|
||||
@ -41,8 +41,8 @@ def simple_algorithm(
|
||||
Costs, Moves = compute_cost_matrix(X = '-' + X, Y = '-' + Y);
|
||||
path = reconstruct_optimal_path(Moves=Moves);
|
||||
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
|
||||
if verb != []:
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
|
||||
if verbose != []:
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verbose=verbose);
|
||||
display = word_y + f'\n{"-"*len(word_x)}\n' + word_x;
|
||||
print(f'\n{repr}\n\n\x1b[1mOptimales Alignment:\x1b[0m\n\n{display}\n');
|
||||
return word_x, word_y;
|
||||
@ -51,7 +51,7 @@ def hirschberg_algorithm(
|
||||
X: str,
|
||||
Y: str,
|
||||
once: bool = False,
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
verbose: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Tuple[str, str]:
|
||||
'''
|
||||
@ -66,14 +66,14 @@ def hirschberg_algorithm(
|
||||
'''
|
||||
# ggf. nur den simplen Algorithmus ausführen:
|
||||
if once:
|
||||
return simple_algorithm(X=X, Y=Y, verb=verb, show=show);
|
||||
return simple_algorithm(X=X, Y=Y, verbose=verbose, show=show);
|
||||
|
||||
align = hirschberg_algorithm_step(X=X, Y=Y, depth=1, verb=verb, show=show);
|
||||
align = hirschberg_algorithm_step(X=X, Y=Y, depth=1, verbose=verbose, show=show);
|
||||
word_x = align.as_string1();
|
||||
word_y = align.as_string2();
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != []:
|
||||
if verbose != []:
|
||||
if EnumHirschbergShow.tree in show:
|
||||
display = align.astree(braces=True);
|
||||
else:
|
||||
@ -88,7 +88,7 @@ def hirschberg_algorithm_step(
|
||||
X: str,
|
||||
Y: str,
|
||||
depth: int = 0,
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
verbose: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Alignment:
|
||||
'''
|
||||
@ -106,8 +106,8 @@ def hirschberg_algorithm_step(
|
||||
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != [] and (EnumHirschbergShow.atoms in show):
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
|
||||
if verbose != [] and (EnumHirschbergShow.atoms in show):
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verbose=verbose);
|
||||
print(f'\n\x1b[1mRekursionstiefe: {depth}\x1b[0m\n\n{repr}')
|
||||
|
||||
return AlignmentBasic(word1=word_x, word2=word_y);
|
||||
@ -127,7 +127,7 @@ def hirschberg_algorithm_step(
|
||||
Costs2, Moves2 = compute_cost_matrix(X = '-' + X2, Y = '-' + Y2);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != []:
|
||||
if verbose != []:
|
||||
path1, path2 = reconstruct_optimal_path_halves(Costs1=Costs1, Costs2=Costs2, Moves1=Moves1, Moves2=Moves2);
|
||||
repr = display_cost_matrix_halves(
|
||||
Costs1 = Costs1,
|
||||
@ -138,7 +138,7 @@ def hirschberg_algorithm_step(
|
||||
X2 = '-' + X2,
|
||||
Y1 = '-' + Y1,
|
||||
Y2 = '-' + Y2,
|
||||
verb = verb,
|
||||
verbose = verbose,
|
||||
);
|
||||
print(f'\n\x1b[1mRekursionstiefe: {depth}\x1b[0m\n\n{repr}')
|
||||
|
||||
@ -146,8 +146,8 @@ def hirschberg_algorithm_step(
|
||||
coord1, coord2 = get_optimal_transition(Costs1=Costs1, Costs2=Costs2);
|
||||
p = coord1[0];
|
||||
# Divide and Conquer ausführen:
|
||||
align_left = hirschberg_algorithm_step(X=X[:p], Y=Y[:n], depth=depth+1, verb=verb, show=show);
|
||||
align_right = hirschberg_algorithm_step(X=X[p:], Y=Y[n:], depth=depth+1, verb=verb, show=show);
|
||||
align_left = hirschberg_algorithm_step(X=X[:p], Y=Y[:n], depth=depth+1, verbose=verbose, show=show);
|
||||
align_right = hirschberg_algorithm_step(X=X[p:], Y=Y[n:], depth=depth+1, verbose=verbose, show=show);
|
||||
|
||||
# Resultate zusammensetzen:
|
||||
return AlignmentPair(left=align_left, right=align_right);
|
||||
|
@ -30,7 +30,7 @@ def represent_cost_matrix(
|
||||
path: List[Tuple[int, int]],
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: List[EnumHirschbergVerbosity],
|
||||
verbose: List[EnumHirschbergVerbosity],
|
||||
pad: bool = False,
|
||||
) -> np.ndarray: # NDArray[(Any, Any), Any]:
|
||||
m = len(X); # display vertically
|
||||
@ -55,12 +55,12 @@ def represent_cost_matrix(
|
||||
table[-3, 3:(3+n)] = '--';
|
||||
table[3:(3+m), -1] = '|';
|
||||
|
||||
if EnumHirschbergVerbosity.costs in verb:
|
||||
if EnumHirschbergVerbosity.costs in verbose:
|
||||
table[3:(3+m), 3:(3+n)] = Costs.copy();
|
||||
if EnumHirschbergVerbosity.moves in verb:
|
||||
if EnumHirschbergVerbosity.moves in verbose:
|
||||
for (i, j) in path:
|
||||
table[3 + i, 3 + j] = f'\x1b[31;4;1m{table[3 + i, 3 + j]}\x1b[0m';
|
||||
elif EnumHirschbergVerbosity.moves in verb:
|
||||
elif EnumHirschbergVerbosity.moves in verbose:
|
||||
table[3:(3+m), 3:(3+n)] = '\x1b[2m.\x1b[0m';
|
||||
for (i, j) in path:
|
||||
table[3 + i, 3 + j] = '\x1b[31;1m*\x1b[0m';
|
||||
@ -72,7 +72,7 @@ def display_cost_matrix(
|
||||
path: List[Tuple[int, int]],
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: EnumHirschbergVerbosity,
|
||||
verbose: EnumHirschbergVerbosity,
|
||||
) -> str:
|
||||
'''
|
||||
Zeigt Kostenmatrix + optimalen Pfad.
|
||||
@ -85,7 +85,7 @@ def display_cost_matrix(
|
||||
@returns
|
||||
- eine 'printable' Darstellung der Matrix mit den Strings X, Y + Indexes.
|
||||
'''
|
||||
table = represent_cost_matrix(Costs=Costs, path=path, X=X, Y=Y, verb=verb);
|
||||
table = represent_cost_matrix(Costs=Costs, path=path, X=X, Y=Y, verbose=verbose);
|
||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||
repr = tabulate(pd.DataFrame(table), showindex=False, stralign='center', tablefmt='plain');
|
||||
return repr;
|
||||
@ -99,7 +99,7 @@ def display_cost_matrix_halves(
|
||||
X2: str,
|
||||
Y1: str,
|
||||
Y2: str,
|
||||
verb: EnumHirschbergVerbosity,
|
||||
verbose: EnumHirschbergVerbosity,
|
||||
) -> str:
|
||||
'''
|
||||
Zeigt Kostenmatrix + optimalen Pfad für Schritt im D & C Hirschberg-Algorithmus
|
||||
@ -112,8 +112,8 @@ def display_cost_matrix_halves(
|
||||
@returns
|
||||
- eine 'printable' Darstellung der Matrix mit den Strings X, Y + Indexes.
|
||||
'''
|
||||
table1 = represent_cost_matrix(Costs=Costs1, path=path1, X=X1, Y=Y1, verb=verb, pad=True);
|
||||
table2 = represent_cost_matrix(Costs=Costs2, path=path2, X=X2, Y=Y2, verb=verb, pad=True);
|
||||
table1 = represent_cost_matrix(Costs=Costs1, path=path1, X=X1, Y=Y1, verbose=verbose, pad=True);
|
||||
table2 = represent_cost_matrix(Costs=Costs2, path=path2, X=X2, Y=Y2, verbose=verbose, pad=True);
|
||||
|
||||
# merge Taellen:
|
||||
table = np.concatenate([table1[:, :-1], table2[::-1, ::-1]], axis=1);
|
||||
|
@ -8,6 +8,7 @@
|
||||
from __future__ import annotations;
|
||||
|
||||
from src.thirdparty.types import *;
|
||||
from src.thirdparty.maths import *;
|
||||
|
||||
from src.core.log import *;
|
||||
from src.models.stacks import *;
|
||||
@ -34,18 +35,31 @@ class State(Enum):
|
||||
# Tarjan Algorithm
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def tarjan_algorithm(G: Graph, debug: bool = False) -> List[Any]:
|
||||
def tarjan_algorithm(G: Graph, verbose: bool = False) -> List[Any]:
|
||||
'''
|
||||
# Tarjan Algorithm #
|
||||
Runs the Tarjan-Algorithm to compute the strongly connected components.
|
||||
'''
|
||||
# initialise state - mark all nodes as UNTOUCHED:
|
||||
ctx = Context(G, debug=debug);
|
||||
ctx = Context(G);
|
||||
# loop through all nodes and carry out Tarjan-Algorithm, provided node not already visitted.
|
||||
for u in G.nodes:
|
||||
if ctx.get_state(u) == State.UNTOUCHED:
|
||||
tarjan_visit(G, u, ctx);
|
||||
|
||||
if verbose:
|
||||
repr = ctx.repr();
|
||||
print('');
|
||||
print(f'\x1b[1mZusammenfassung der Ausführung des Tarjan-Algorithmus\x1b[0m');
|
||||
print('');
|
||||
print(repr);
|
||||
print('');
|
||||
print('\x1b[1mStark zshgd Komponenten:\x1b[0m')
|
||||
print('');
|
||||
for component in ctx.components:
|
||||
print(component);
|
||||
print('');
|
||||
|
||||
return ctx.components;
|
||||
|
||||
def tarjan_visit(G: Graph, u: Any, ctx: Context):
|
||||
@ -107,15 +121,15 @@ class NodeInformation(NodeInformationDefault):
|
||||
@dataclass
|
||||
class ContextDefault:
|
||||
max_index: int = field(default=0);
|
||||
debug: bool = field(default=False);
|
||||
verbose: bool = field(default=False);
|
||||
stack: Stack = field(default_factory=lambda: Stack());
|
||||
components: list[list[Any]] = field(default_factory=lambda: []);
|
||||
infos: dict[Any, NodeInformation] = field(default_factory=lambda: dict());
|
||||
components: list[list[Any]] = field(default_factory=list);
|
||||
infos: dict[Any, NodeInformation] = field(default_factory=dict);
|
||||
finished: List[Any] = field(default_factory=list);
|
||||
|
||||
class Context(ContextDefault):
|
||||
def __init__(self, G: Graph, debug: bool):
|
||||
def __init__(self, G: Graph):
|
||||
super().__init__();
|
||||
self.debug = debug;
|
||||
self.infos = { u: NodeInformation(u) for u in G.nodes };
|
||||
|
||||
def push(self, u: Any):
|
||||
@ -161,7 +175,21 @@ class Context(ContextDefault):
|
||||
return self.get_info(u).index;
|
||||
|
||||
def log_info(self, u: Any):
|
||||
if not self.debug:
|
||||
return;
|
||||
info = self.get_info(u);
|
||||
log_debug(info);
|
||||
self.finished.append(u);
|
||||
|
||||
def repr(self) -> str:
|
||||
table = pd.DataFrame([ self.infos[u] for u in self.finished ]) \
|
||||
.drop(columns='state')
|
||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||
repr = tabulate(
|
||||
table,
|
||||
headers = {
|
||||
'Knoten': 'node',
|
||||
'kleinster Idx': 'least_index',
|
||||
'Index': 'index',
|
||||
},
|
||||
showindex = False,
|
||||
stralign = 'center',
|
||||
tablefmt = 'grid',
|
||||
);
|
||||
return repr;
|
||||
|
@ -7,6 +7,7 @@
|
||||
|
||||
from __future__ import annotations;
|
||||
|
||||
from models.generated.commands import *;
|
||||
from src.thirdparty.types import *;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -28,7 +29,8 @@ class Graph(object):
|
||||
nodes: list[Any];
|
||||
edges: list[tuple[Any,Any]]
|
||||
|
||||
def __init__(self, nodes: list[Any], edges: list[tuple[Any,Any]]):
|
||||
def __init__(self, nodes: list[Any], edges: list[Tuple[Any, Any]]):
|
||||
assert all(len(edge) == 2 for edge in edges);
|
||||
self.nodes = nodes;
|
||||
self.edges = edges;
|
||||
return;
|
||||
|
Loading…
x
Reference in New Issue
Block a user