woche12 ---> master #3
@ -27,15 +27,28 @@ __all__ = [
|
||||
|
||||
@run_safely()
|
||||
def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallError]:
|
||||
# Compute landscape (fitness fct + topology) + initial co-ordinates:
|
||||
one_based = command.one_based;
|
||||
landscape = Landscape(
|
||||
values = command.landscape.values,
|
||||
labels = command.landscape.labels,
|
||||
metric = command.landscape.neighbourhoods.metric,
|
||||
one_based = one_based,
|
||||
);
|
||||
if isinstance(command.coords_init, list):
|
||||
coords_init = tuple(command.coords_init);
|
||||
if one_based:
|
||||
coords_init = tuple(xx - 1 for xx in coords_init);
|
||||
assert len(coords_init) == landscape.dim, 'Dimension of initial co-ordinations inconsistent with landscape!';
|
||||
else:
|
||||
coords_init = landscape.coords_middle;
|
||||
|
||||
match command.algorithm:
|
||||
case EnumWalkMode.adaptive:
|
||||
result = adaptive_walk_algorithm(
|
||||
landscape = landscape,
|
||||
r = command.landscape.neighbourhoods.radius,
|
||||
coords_init = coords_init,
|
||||
optimise = command.optimise,
|
||||
verbose = config.OPTIONS.random_walk.verbose
|
||||
);
|
||||
@ -43,6 +56,7 @@ def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallE
|
||||
result = gradient_walk_algorithm(
|
||||
landscape = landscape,
|
||||
r = command.landscape.neighbourhoods.radius,
|
||||
coords_init = coords_init,
|
||||
optimise = command.optimise,
|
||||
verbose = config.OPTIONS.random_walk.verbose
|
||||
);
|
||||
@ -50,6 +64,8 @@ def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallE
|
||||
result = metropolis_walk_algorithm(
|
||||
landscape = landscape,
|
||||
r = command.landscape.neighbourhoods.radius,
|
||||
coords_init = coords_init,
|
||||
T = command.temperature_init,
|
||||
annealing = command.annealing,
|
||||
optimise = command.optimise,
|
||||
verbose = config.OPTIONS.random_walk.verbose
|
||||
|
@ -27,16 +27,23 @@ __all__ = [
|
||||
|
||||
class Landscape():
|
||||
_fct: np.ndarray;
|
||||
_labels: list[str];
|
||||
_metric: EnumLandscapeMetric;
|
||||
_radius: float;
|
||||
_one_based: bool;
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: DataTypeLandscapeValues,
|
||||
labels: List[str],
|
||||
metric: EnumLandscapeMetric = EnumLandscapeMetric.maximum,
|
||||
one_based: bool = False,
|
||||
):
|
||||
self._fct = convert_to_nparray(values);
|
||||
assert len(labels) == self.dim, 'A label is required for each axis/dimension!';
|
||||
self._labels = labels;
|
||||
self._metric = metric;
|
||||
self._one_based = one_based;
|
||||
return;
|
||||
|
||||
@property
|
||||
@ -47,14 +54,27 @@ class Landscape():
|
||||
def dim(self) -> int:
|
||||
return len(self._fct.shape);
|
||||
|
||||
@property
|
||||
def coords_middle(self) -> tuple:
|
||||
return tuple(math.floor(s/2) for s in self.shape);
|
||||
|
||||
def fitness(self, *x: int) -> float:
|
||||
return self._fct[x];
|
||||
|
||||
def label(self, *x: int) -> str:
|
||||
if self._one_based:
|
||||
x = tuple(xx + 1 for xx in x);
|
||||
expr = ','.join([ f'{name}{xx}' for name, xx in zip(self._labels, x)]);
|
||||
if self.dim > 1:
|
||||
expr = f'({expr})';
|
||||
return expr;
|
||||
|
||||
def neighbourhood(self, *x: int, r: float, strict: bool = False) -> List[tuple]:
|
||||
r = int(r);
|
||||
sides = [
|
||||
[ xx - j for j in range(1,r+1) if xx - j in range(s) ]
|
||||
[ xx - j for j in range(1, r+1) if xx - j in range(s) ]
|
||||
+ ([ xx ] if xx in range(s) else [])
|
||||
+ [ xx + j for j in range(1,r+1) if xx + j in range(s) ]
|
||||
+ [ xx + j for j in range(1, r+1) if xx + j in range(s) ]
|
||||
for xx, s in zip(x, self.shape)
|
||||
];
|
||||
match self._metric:
|
||||
|
Loading…
x
Reference in New Issue
Block a user