master > master: SKA5 Diagramm + Quiz4

master
RD 2 years ago
parent 5b4d2b2151
commit 6b2f70c869
  1. BIN
      docs/loesungen.pdf
  2. 238
      docs/loesungen.tex

Binary file not shown.

@ -62,6 +62,8 @@
%% — body/quizzes/quiz2.tex;
%% |
%% — body/quizzes/quiz3.tex;
%% |
%% — body/quizzes/quiz4.tex;
%% |
%% — back/index.tex;
%% |
@ -201,6 +203,7 @@
\usepackage{relsize}
\usepackage{savesym}
\usepackage{stmaryrd}
\usepackage{subfigure}
\usepackage{yfonts} %% <— Altgotische Fonts
\usepackage{tikz}
\usepackage{xy}
@ -1068,35 +1071,10 @@
\tikzset{
>=stealth,
auto,
node distance=1cm,
thick,
main node/.style={
circle,draw,font=\sffamily\Large\bfseries,minimum size=0pt
},
state/.style={minimum size=0pt}
loop above right/.style={loop,out=30,in=60,distance=0.5cm},
loop above left/.style={above left,out=150,in=120,loop},
loop below right/.style={below right,out=330,in=300,loop},
loop below left/.style={below left,out=240,in=210,loop},
itria/.style={
draw,dashed,shape border uses incircle,
isosceles triangle,shape border rotate=90,yshift=-1.45cm
},
rtria/.style={
draw,dashed,shape border uses incircle,
isosceles triangle,isosceles triangle apex angle=90,
shape border rotate=-45,yshift=0.2cm,xshift=0.5cm
},
ritria/.style={
draw,dashed,shape border uses incircle,
isosceles triangle,isosceles triangle apex angle=110,
shape border rotate=-55,yshift=0.1cm
},
litria/.style={
draw,dashed,shape border uses incircle,
isosceles triangle,isosceles triangle apex angle=110,
shape border rotate=235,yshift=0.1cm
}
}
%% ********************************************************************************
@ -4828,7 +4806,7 @@ Und für alle anderen rationalen Zahlen, $r\in\rtnl\ohne\{0\}$, wähle
p_{r} &:= &q_{r}\cdot r\in\intgr.\\
\end{mathe}
Da $r$ ration ist, ist $D(r)$ per Definition nicht leer.
Da $r$ rational ist, ist $D(r)$ per Definition nicht leer.
Darum ist die Wahl von $q_{r}$ und $p_{r}$ wohldefiniert
und per Konstruktion gilt $p_{r}/q_{r}=r$.
(Für $r=0$ gilt ebenfalls offensichtlich $p_{r}/q_{r}=r$.)
@ -4972,13 +4950,19 @@ Darum entspricht unserer Darstellung der im \cite[Satz 3.5.1]{sinn2020}.
\label{ska:5:ex:14}
\let\sectionname\altsectionname
Die Gruppe von Bijektionen von $\{1,2\}$ auf $\{1,2\}$ entspricht der Permutationsgruppe $S_{2}$.
Dies hat $2!=2$ Elemente:
Die Gruppe von Bijektionen von $\{1, 2\}$ auf $\{1, 2\}$ entspricht der Permutationsgruppe $S_{2}$.
Dies hat $2!=2$ Elemente, die standardgemäß mit folgenden Labels bezeichnet werden:
\begin{mathe}[mc]{rcl}
e &:= &\text{Funktion, die alles fixiert}\\
(1\,2) &:= &\text{Funktion, die $1$ und $2$ tauscht}\\
\end{mathe}
\begin{longtable}{|l|l|}
\hline
\hline
Label &Beschreibung des Elements\\
\hline
$e$ &Funktion, die alles fixiert\\
$(1\ 2)$ &Funktion, die 1 und 2 tauscht\\
\hline
\hline
\end{longtable}
Die Gruppentafel sieht folgendermaßen aus:
@ -4995,17 +4979,23 @@ Die Gruppentafel sieht folgendermaßen aus:
\hline
\end{longtable}
Die Gruppe von Bijektionen von $\{1,2,3\}$ auf $\{1,2,3\}$ entspricht der Permutationsgruppe $S_{3}$.
Dies hat $3!=6$ Elemente:
Die Gruppe von Bijektionen von $\{1, 2, 3\}$ auf $\{1, 2, 3\}$ entspricht der Permutationsgruppe $S_{3}$.
Dies hat $3!=6$ Elemente, die standardgemäß mit folgenden Labels bezeichnet werden:
\begin{mathe}[mc]{rcl}
e &:= &\text{Funktion, die alles fixiert}\\
(1\,2) &:= &\text{Funktion, die $1$ und $2$ tauscht}\\
(1\,3) &:= &\text{Funktion, die $1$ und $3$ tauscht}\\
(2\,3) &:= &\text{Funktion, die $2$ und $3$ tauscht}\\
(1\,2\,3) &:= &\text{Funktion, die $1\mapsto 2\mapsto 3\mapsto 1$ abbildet}\\
(1\,3\,2) &:= &\text{Funktion, die $1\mapsto 3\mapsto 2\mapsto 1$ abbildet}\\
\end{mathe}
\begin{longtable}{|l|l|}
\hline
\hline
Label &Beschreibung des Elements\\
\hline
$e$ &Funktion, die alles fixiert\\
$(2\ 3)$ &Funktion, die 2 und 3 tauscht\\
$(1\ 2)$ &Funktion, die 1 und 2 tauscht\\
$(1\ 2\ 3)$ &Funktion, die $1\mapsto2\mapsto3$ abbildet\\
$(1\ 3\ 2)$ &Funktion, die $1\mapsto3\mapsto2$ abbildet\\
$(1\ 3)$ &Funktion, die 1 und 3 tauscht\\
\hline
\hline
\end{longtable}
Die Gruppentafel sieht folgendermaßen aus:
@ -5038,6 +5028,88 @@ Die Gruppentafel sieht folgendermaßen aus:
An der Tafel lässt sich leicht erkennen, ob eine Gruppe kommutativ ist:
eine Gruppe, $G$, ist genau dann kommutativ, wenn die Gruppentafel symmetrisch ist.
Hierbei sollte man darauf achten, dass die \emph{Labels} der Elemente gar keine Rolle spielen.
Um diese Urteil also leichter treffen zu können ersetzen wir die Elemente durch verschieden gefärbte Quadrate:
\begin{figure}[h]
\footnotesize
\hraum
\subfigure[$S_{2}$]{
\begin{tikzpicture}[node distance=8mm, thick]
\pgfmathsetmacro\habst{1}
\pgfmathsetmacro\vabst{1}
\pgfmathsetmacro\rad{8mm}
\node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (g_0) at (0*\habst, -1*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (h_0) at (1*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (g_1) at (0*\habst, -2*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (h_1) at (2*\habst, 0*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {};
\end{tikzpicture}
}
\hraum
\subfigure[$S_{3}$]{
\begin{tikzpicture}[node distance=8mm, thick]
\pgfmathsetmacro\habst{1}
\pgfmathsetmacro\vabst{1}
\pgfmathsetmacro\rad{8mm}
\node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (g_0) at (0*\habst, -1*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (h_0) at (1*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (g_1) at (0*\habst, -2*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (h_1) at (2*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (g_2) at (0*\habst, -3*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (h_2) at (3*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(1\ 2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (g_3) at (0*\habst, -4*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (h_3) at (4*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(1\ 3\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (g_4) at (0*\habst, -5*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (h_4) at (5*\habst, 0*\vabst) {};
\node[rectangle, label=left:{$(1\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (g_5) at (0*\habst, -6*\vabst) {};
\node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (h_5) at (6*\habst, 0*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_0_2) at (3*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_0_3) at (4*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_0_4) at (5*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_0_5) at (6*\habst, -1*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_1_2) at (3*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_1_3) at (4*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_1_4) at (5*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_1_5) at (6*\habst, -2*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_2_0) at (1*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_2_1) at (2*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_2_2) at (3*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_2_3) at (4*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_2_4) at (5*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_2_5) at (6*\habst, -3*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_3_0) at (1*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_3_1) at (2*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_3_2) at (3*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_3_3) at (4*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_3_4) at (5*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_3_5) at (6*\habst, -4*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_4_0) at (1*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_4_1) at (2*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_4_2) at (3*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_4_3) at (4*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_4_4) at (5*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_4_5) at (6*\habst, -5*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_5_0) at (1*\habst, -6*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_5_1) at (2*\habst, -6*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_5_2) at (3*\habst, -6*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_5_3) at (4*\habst, -6*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_5_4) at (5*\habst, -6*\vabst) {};
\node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_5_5) at (6*\habst, -6*\vabst) {};
\end{tikzpicture}
}
\hraum
\caption{Gruppentafel mit Elementen durch Farben ersetzt}
\end{figure}
Nach den o.\,s. Tafeln ist die erste Gruppe, $S_{2}$, kommutativ und die zweite, $S_{3}$, nicht.
@ -5232,6 +5304,88 @@ wobei
Dann $f(f^{-1}(B))=f(f^{-1}(Y))=f(X)=\{1\}\subset Y$ (strikt).
\end{enumerate}
%% ********************************************************************************
%% FILE: body/quizzes/quiz4.tex
%% ********************************************************************************
\setcounternach{chapter}{4}
\chapter[Woche 4]{Woche 4}
\label{quiz:4}
Gegeben seien Mengen $X$, $Y$, $Z$,
und Funktionen $f:X\to Y$ und $g:Y\to Z$.
Wir betrachten die Komposition ${g\circ f:X\to Z}$
\hraum
\begin{tikzpicture}[node distance=0.5cm, thick]
\pgfmathsetmacro\habst{3}
\pgfmathsetmacro\vabst{1}
\node[label=below:{$X$}] (SetX) at (0*\habst,0*\vabst) {$\bullet$};
\node[label=below:{$Y$}] (SetY) at (1*\habst,0*\vabst) {$\bullet$};
\node[label=below:{$Z$}] (SetZ) at (2*\habst,0*\vabst) {$\bullet$};
\draw (SetX) edge [->] node [pos=0.5, above] {\footnotesize $f$} (SetY);
\draw (SetY) edge [->] node [pos=0.5, above] {\footnotesize $g$} (SetZ);
\end{tikzpicture}
\hraum
\begin{enumerate}{\bfseries (a)}
%% QUIZ 4-a
\item
\begin{claim*}
$g\circ f$ injektiv $\Rightarrow$ $f$ injektiv.
\end{claim*}
\begin{proof}
Angenommen, $g\circ f$ sei injektiv.
\textbf{Zu zeigen:} $f$ ist injektiv\\
\textbf{Zu zeigen:} Für alle $x_{1},x_{2}\in X$ gilt $f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}$.\\
Seien also $x_{1},x_{2}\in X$ beliebig.
Es gilt:
\begin{mathe}[mc]{rcl}
f(x_{1}) = f(x_{2})
&\Longrightarrow
&g(f(x_{1})) = g(f(x_{2}))\\
&\Longrightarrow
&(g\circ f)(x_{1}) = (g\circ f)(x_{2})\\
&\Longrightarrow
&x_{1} = x_{2},
\,\text{da $g\circ f$ injektiv}.\\
\end{mathe}
Also ist $f$ injektiv.
\end{proof}
%% QUIZ 4-b
\item
\begin{claim*}
$f,g$ injektiv $\Rightarrow$ $g\circ f$ injektiv.
\end{claim*}
\begin{proof}
Angenommen, $f,g$ seien injektiv.
\textbf{Zu zeigen:} $g\circ f$ ist injektiv\\
\textbf{Zu zeigen:} Für alle $x_{1},x_{2}\in X$ gilt $(g\circ f)(x_{1})=(g\circ f)(x_{2})\Rightarrow x_{1}=x_{2}$.\\
Seien also $x_{1},x_{2}\in X$ beliebig.
Es gilt:
\begin{mathe}[mc]{rcl}
(g\circ f)(x_{1}) = (g\circ f)(x_{2})
&\Longrightarrow
&g(f(x_{1})) = g(f(x_{2}))\\
&\Longrightarrow
&f(x_{1}) = f(x_{2}),
\,\text{da $g$ injektiv}\\
&\Longrightarrow
&x_{1} = x_{2},
\,\text{da $f$ injektiv}.\\
\end{mathe}
Also ist $g\circ f$ injektiv.
\end{proof}
\end{enumerate}
%% ********************************************************************************
%% FILE: back/index.tex
%% ********************************************************************************

Loading…
Cancel
Save