|
|
|
@ -127,12 +127,9 @@ und da dim(V) = 4, erkennt man sofort, dass
|
|
|
|
|
|
|
|
|
|
Man braucht die Aufstellung der Basiselemente und das Gaußverfahren eigentlich nicht. Laut Aufgabenstellung gelten |
|
|
|
|
|
|
|
|
|
U₁ = {x ∈ ℝ⁴ | x₁ + 3·x₂ = 4·x₃ + x₄} |
|
|
|
|
= {a₁}^⊥, wobei a₁ = (1,3,-4,-1)ᵀ |
|
|
|
|
= (Lin{a₁})^⊥, |
|
|
|
|
U₂ = {x ∈ ℝ⁴ | x₁ = 5·x₂ + 2·x₃ + x₄} |
|
|
|
|
= {a₂}^⊥, wobei a₂ = (1,-5,-2,-1)ᵀv |
|
|
|
|
= (Lin{a₂})^⊥, |
|
|
|
|
U₁ = {x ∈ ℝ⁴ | x₁ + 3·x₂ = 4·x₃ + x₄} = {a₁}^⊥ = (Lin{a₁})^⊥, |
|
|
|
|
U₂ = {x ∈ ℝ⁴ | x₁ = 5·x₂ + 2·x₃ + x₄} = {a₂}^⊥ = (Lin{a₂})^⊥, |
|
|
|
|
wobei a₁ = (1,3,-4,-1)ᵀ und a₂ = (1,-5,-2,-1)ᵀ |
|
|
|
|
|
|
|
|
|
und damit gilt |
|
|
|
|
|
|
|
|
|