master > master: Formatierung
This commit is contained in:
		
							parent
							
								
									0a781318a9
								
							
						
					
					
						commit
						6fe26a82ec
					
				
										
											Binary file not shown.
										
									
								
							| @ -1475,7 +1475,7 @@ durch | ||||
|           1 &8 &6 &-3\\ | ||||
|           2 &14 &\alpha &-2\\ | ||||
|         \end{matrix} | ||||
|         &\mathbf{b}_{\beta} &:= &\begin{vector}  4\\  0\\  \beta\\\end{vector} | ||||
|         &\mathbf{b}_{\beta} &:= &\begin{vector} 4\\ 0\\ \beta\\\end{vector} | ||||
|     \end{mathe} | ||||
| 
 | ||||
| gegeben sind. | ||||
| @ -1574,15 +1574,15 @@ Dies führt zu einem Fallunterschied: | ||||
|                     Zusammengefasst erhalten wir die allgemeine Form der Lösung: | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         \mathbf{x} &= &\begin{svector}  x_{1}\\  x_{2}\\  x_{3}\\  x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector}  32 + 26x_{3} + -13x_{4}\\  -4 - 4x_{3} + 2x_{4}\\  x_{3}\\  x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector}  32 + 26x_{3} + -13x_{4}\\  -4 - 4x_{3} + 2x_{4}\\  0 + 1x_{3} + 0x_{4}\\  0 + 0x_{3} + 1x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                             + \begin{svector}  26x_{3}\\  -4x_{3}\\  1x_{3}\\  0x_{3}\\\end{svector} | ||||
|                             + \begin{svector}  -13x_{4}\\  2x_{4}\\  1x_{4}\\  1x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                             + x_{3}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} | ||||
|                             + x_{4}\cdot\begin{svector}  -13\\  2\\  1\\  1\\\end{svector}\\ | ||||
|                         \mathbf{x} &= &\begin{svector} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector} 32 + 26x_{3} + -13x_{4}\\ -4 - 4x_{3} + 2x_{4}\\ x_{3}\\ x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector} 32 + 26x_{3} + -13x_{4}\\ -4 - 4x_{3} + 2x_{4}\\ 0 + 1x_{3} + 0x_{4}\\ 0 + 0x_{3} + 1x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                             + \begin{svector} 26x_{3}\\ -4x_{3}\\ 1x_{3}\\ 0x_{3}\\\end{svector} | ||||
|                             + \begin{svector} -13x_{4}\\ 2x_{4}\\ 1x_{4}\\ 1x_{4}\\\end{svector}\\ | ||||
|                             &= &\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                             + x_{3}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} | ||||
|                             + x_{4}\cdot\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector}\\ | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                     mit $x_{3}$, $x_{4}$ frei wählbar. | ||||
| @ -1591,14 +1591,14 @@ Dies führt zu einem Fallunterschied: | ||||
|                 Also erhalten wird in diesem Falle | ||||
|                     $\boxed{ | ||||
|                         L_{\alpha,\beta}=\left\{ | ||||
|                             \begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                             + t_{1}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} | ||||
|                             + t_{2}\cdot\begin{svector}  -13\\  2\\  1\\  1\\\end{svector} | ||||
|                             \begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                             + t_{1}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} | ||||
|                             + t_{2}\cdot\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector} | ||||
|                         \mid t_{1}, t_{2}\in\reell | ||||
|                         \right\} | ||||
|                     }$, | ||||
|                 oder etwas kompakter formuliert, | ||||
|                     ${L_{\alpha,\beta}=\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} + \vectorspacespan\left\{\begin{svector}  26\\  -4\\  1\\  0\\\end{svector}, \begin{svector}  -13\\  2\\  1\\  1\\\end{svector}\right\}}$. | ||||
|                     ${L_{\alpha,\beta}=\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} + \vectorspacespan\left\{\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector}, \begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector}\right\}}$. | ||||
|         \end{enumerate} | ||||
| 
 | ||||
|     %% FALL 2 | ||||
| @ -1617,12 +1617,12 @@ Dies führt zu einem Fallunterschied: | ||||
|             das heißt | ||||
| 
 | ||||
|             \begin{mathe}[mc]{rcl} | ||||
|                 \mathbf{x} &= &\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                     + x_{3}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} | ||||
|                     + x_{4}\cdot\begin{svector}  -13\\  2\\  1\\  1\\\end{svector}\\ | ||||
|                     &= &\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                     + \frac{\beta-8}{\alpha-4}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} | ||||
|                     + x_{4}\cdot\begin{svector}  -13\\  2\\  1\\  1\\\end{svector},\\ | ||||
|                 \mathbf{x} &= &\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                     + x_{3}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} | ||||
|                     + x_{4}\cdot\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector}\\ | ||||
|                     &= &\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                     + \frac{\beta-8}{\alpha-4}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} | ||||
|                     + x_{4}\cdot\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector},\\ | ||||
|             \end{mathe} | ||||
| 
 | ||||
|             wobei $x_{4}$ frei wählbar ist. | ||||
| @ -1631,14 +1631,14 @@ Dies führt zu einem Fallunterschied: | ||||
|         Also erhalten wird in diesem Falle | ||||
|             $\boxed{ | ||||
|                 L_{\alpha,\beta}=\left\{ | ||||
|                     \begin{svector}  32\\  -4\\  0\\  0\\\end{svector} | ||||
|                     + \frac{\beta-8}{\alpha-4}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} | ||||
|                     + t\cdot\begin{svector}  -13\\  2\\  1\\  1\\\end{svector} | ||||
|                     \begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} | ||||
|                     + \frac{\beta-8}{\alpha-4}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} | ||||
|                     + t\cdot\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector} | ||||
|                 \mid t\in\reell | ||||
|                 \right\} | ||||
|             }$, | ||||
|         oder etwas kompakter formuliert, | ||||
|             ${L_{\alpha,\beta}=\begin{svector}  32\\  -4\\  0\\  0\\\end{svector} + \frac{\beta-8}{\alpha-4}\cdot\begin{svector}  26\\  -4\\  1\\  0\\\end{svector} + \vectorspacespan\left\{\begin{svector}  -13\\  2\\  1\\  1\\\end{svector}\right\}}$. | ||||
|             ${L_{\alpha,\beta}=\begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector} + \frac{\beta-8}{\alpha-4}\cdot\begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector} + \vectorspacespan\left\{\begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector}\right\}}$. | ||||
| \end{enumerate} | ||||
| 
 | ||||
| Wir fassen die Lösung für alle Fälle zusammen: | ||||
| @ -1653,9 +1653,9 @@ Wir fassen die Lösung für alle Fälle zusammen: | ||||
| 
 | ||||
| für alle $\alpha,\beta\in\reell$, | ||||
| wobei | ||||
|     $\mathbf{u} = \begin{svector}  32\\  -4\\  0\\  0\\\end{svector}$, | ||||
|     $\mathbf{v} = \begin{svector}  26\\  -4\\  1\\  0\\\end{svector}$, | ||||
|     $\mathbf{w} = \begin{svector}  -13\\  2\\  1\\  1\\\end{svector}$. | ||||
|     $\mathbf{u} = \begin{svector} 32\\ -4\\ 0\\ 0\\\end{svector}$, | ||||
|     $\mathbf{v} = \begin{svector} 26\\ -4\\ 1\\ 0\\\end{svector}$, | ||||
|     $\mathbf{w} = \begin{svector} -13\\ 2\\ 1\\ 1\\\end{svector}$. | ||||
| 
 | ||||
| %% AUFGABE 1-2 | ||||
| \let\altsectionname\sectionname | ||||
| @ -2391,10 +2391,10 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
|         Betrachte die folgenden Vektoren in $\reell^{3}$: | ||||
| 
 | ||||
|             \begin{mathe}[mc]{rclqrclqrclqrcl} | ||||
|                 \mathbf{v}          &= &\begin{svector}  0\\  0\\  0\\\end{svector}, | ||||
|                 &\mathbf{v}^{\prime} &= &\begin{svector}  1\\  0\\  0\\\end{svector}, | ||||
|                 &\mathbf{w}          &= &\begin{svector}  0\\  1\\  0\\\end{svector}, | ||||
|                 &\mathbf{w}^{\prime} &= &\begin{svector}  0\\  1\\  1\\\end{svector}.\\ | ||||
|                 \mathbf{v}          &= &\begin{svector} 0\\ 0\\ 0\\\end{svector}, | ||||
|                 &\mathbf{v}^{\prime} &= &\begin{svector} 1\\ 0\\ 0\\\end{svector}, | ||||
|                 &\mathbf{w}          &= &\begin{svector} 0\\ 1\\ 0\\\end{svector}, | ||||
|                 &\mathbf{w}^{\prime} &= &\begin{svector} 0\\ 1\\ 1\\\end{svector}.\\ | ||||
|             \end{mathe} | ||||
| 
 | ||||
|         Bis auf 2-Dimensionalität erfüllen diese die Voraussetzungen in \Cref{satz:main:ueb:2:ex:2a}. | ||||
| @ -2474,7 +2474,7 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
|                 gelten muss, da $\gamma_{1}\neq\gamma_{2}$. | ||||
|                 Eingesetzt in die erste Gleichung oben liefert | ||||
|                     $2x+y=\gamma\cdot 0=0$. | ||||
|                 Darum muss $\begin{svector}  x\\  y\\\end{svector}$ | ||||
|                 Darum muss $\begin{svector} x\\ y\\\end{svector}$ | ||||
|                 das LGS $(A|\mathbf{b})$ lösen, wobei | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rclqrcl} | ||||
| @ -2482,7 +2482,7 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
|                           1 &-3\\ | ||||
|                           2 &1\\ | ||||
|                         \end{smatrix}, | ||||
|                         &\mathbf{b} &= &\begin{svector}  7\\  0\\\end{svector} | ||||
|                         &\mathbf{b} &= &\begin{svector} 7\\ 0\\\end{svector} | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                 \begin{algorithm}[\rtab][\rtab] | ||||
| @ -2635,10 +2635,10 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
| Wir arbeiten im Vektorraum $\reell^{3}$ und betrachten die Vektoren | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rclqrclqrclqrcl} | ||||
|         \mathbf{v}_{1} &= &\begin{svector}  1\\  3\\  1\\\end{svector} | ||||
|         &\mathbf{v}_{2} &= &\begin{svector}  -2\\  5\\  -2\\\end{svector} | ||||
|         &\mathbf{w}_{1} &= &\begin{svector}  4\\  -3\\  -3\\\end{svector} | ||||
|         &\mathbf{w}_{2} &= &\begin{svector}  0\\  1\\  1\\\end{svector}\\ | ||||
|         \mathbf{v}_{1} &= &\begin{svector} 1\\ 3\\ 1\\\end{svector} | ||||
|         &\mathbf{v}_{2} &= &\begin{svector} -2\\ 5\\ -2\\\end{svector} | ||||
|         &\mathbf{w}_{1} &= &\begin{svector} 4\\ -3\\ -3\\\end{svector} | ||||
|         &\mathbf{w}_{2} &= &\begin{svector} 0\\ 1\\ 1\\\end{svector}\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| \textbf{Zu berechnen:} | ||||
| @ -2746,7 +2746,7 @@ und daraus die Parameter abzulesen. | ||||
|     Also ist die homogene Lösung gegeben durch | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rcl} | ||||
|         \mathbf{t} &= &\beta\begin{svector}  28\\  -8\\  -11\\  -77\\\end{svector}, | ||||
|         \mathbf{t} &= &\beta\begin{svector} 28\\ -8\\ -11\\ -77\\\end{svector}, | ||||
|         \quad\text{mit $\beta\in\reell$ frei wählbar}. | ||||
|     \end{mathe} | ||||
| \end{algorithm} | ||||
| @ -2766,7 +2766,7 @@ Wir können nun \eqcref{eq:0:ueb:3:ex:1} fortsetzen und erhalten | ||||
|                     \mathbf{\xi}=t_{1}\mathbf{v}_{1}+t_{2}\mathbf{v}_{2} | ||||
|                     \,\text{und}\, | ||||
|                     \exists{\beta\in\reell:~} | ||||
|                         \mathbf{t}=\beta\begin{svector}  28\\  -8\\  -11\\  -77\\\end{svector}\\ | ||||
|                         \mathbf{t}=\beta\begin{svector} 28\\ -8\\ -11\\ -77\\\end{svector}\\ | ||||
|             &\Longleftrightarrow | ||||
|                 &\exists{\beta\in\reell:~} | ||||
|                 \mathbf{\xi}=\beta\cdot( | ||||
| @ -2782,10 +2782,10 @@ Es gilt | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rcccccl} | ||||
|         \mathbf{u} | ||||
|             &= &28\begin{svector}  1\\  3\\  1\\\end{svector} | ||||
|                 -8\begin{svector}  -2\\  5\\  -2\\\end{svector} | ||||
|             &= &\begin{svector}  44\\  44\\  44\\\end{svector} | ||||
|             &= &44\begin{svector}  1\\  1\\  1\\\end{svector}.\\ | ||||
|             &= &28\begin{svector} 1\\ 3\\ 1\\\end{svector} | ||||
|                 -8\begin{svector} -2\\ 5\\ -2\\\end{svector} | ||||
|             &= &\begin{svector} 44\\ 44\\ 44\\\end{svector} | ||||
|             &= &44\begin{svector} 1\\ 1\\ 1\\\end{svector}.\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| Aus \eqcref{eq:1:ueb:3:ex:1} ergibt sich der zu berechnende Untervektorraum | ||||
| @ -2796,8 +2796,8 @@ als | ||||
|         \cap\vectorspacespan\{\mathbf{w}_{1},\mathbf{w}_{2}\} | ||||
|         &= &U | ||||
|         &= &\vectorspacespan\{\mathbf{u}\} | ||||
|         &= &\vectorspacespan\{44\begin{svector}  1\\  1\\  1\\\end{svector}\} | ||||
|         &= &\vectorspacespan\{\begin{svector}  1\\  1\\  1\\\end{svector}\}.\\ | ||||
|         &= &\vectorspacespan\{44\begin{svector} 1\\ 1\\ 1\\\end{svector}\} | ||||
|         &= &\vectorspacespan\{\begin{svector} 1\\ 1\\ 1\\\end{svector}\}.\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| %% AUFGABE 3-2 | ||||
| @ -4164,7 +4164,7 @@ für alle $A,B\in R$. | ||||
| Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rcl} | ||||
|         z\in\kmplx &\mapsto &\begin{svector}  \ReTeil(z)\\  \ImTeil(z)\\\end{svector}\in\reell^{2},\\ | ||||
|         z\in\kmplx &\mapsto &\begin{svector} \ReTeil(z)\\ \ImTeil(z)\\\end{svector}\in\reell^{2},\\ | ||||
|         \mathbf{x}\in\reell^{2} &\mapsto &x_{1}+\imageinh x_{2}\in\kmplx.\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| @ -4173,12 +4173,12 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Für alle $z\in\kmplx\ohne\{0\}$ existieren eindeutige Werte $r\in(0,\infty)$ und $\alpha\in[0,2\pi)$, | ||||
|             dann $z=r\cdot\begin{svector}  \cos(\alpha)\\  \sin(\alpha)\\\end{svector}$ (unter der o.\,s. Identifizierung). | ||||
|             dann $z=r\cdot\begin{svector} \cos(\alpha)\\ \sin(\alpha)\\\end{svector}$ (unter der o.\,s. Identifizierung). | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             Unter der Identifizierung können wir $z=\begin{svector}  x\\  y\\\end{svector}$ schreiben, wobei $x,y\in\reell$. | ||||
|             Da $z\neq 0=\begin{svector}  0\\  0\\\end{svector}$, muss entweder $x\neq 0$ oder $y\neq 0$ gelten. | ||||
|             Unter der Identifizierung können wir $z=\begin{svector} x\\ y\\\end{svector}$ schreiben, wobei $x,y\in\reell$. | ||||
|             Da $z\neq 0=\begin{svector} 0\\ 0\\\end{svector}$, muss entweder $x\neq 0$ oder $y\neq 0$ gelten. | ||||
| 
 | ||||
|             Zur {\bfseries Existenz}: | ||||
|             Sei $r:=\sqrt{x^{2}+y^{2}}$. Dann $r>0$ weil $(x,y)\neq (0,0)$.\\ | ||||
| @ -4226,15 +4226,15 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|                 \end{kompaktenum} | ||||
| 
 | ||||
|             Darum gilt in allen Fällen | ||||
|                 $r\cdot\begin{svector}  \cos(\alpha)\\  \sin(\alpha)\\\end{svector} | ||||
|                 =\begin{svector}  r\cos(\alpha)\\  r\sin(\alpha)\\\end{svector} | ||||
|                 =\begin{svector}  x\\  y\\\end{svector} | ||||
|                 $r\cdot\begin{svector} \cos(\alpha)\\ \sin(\alpha)\\\end{svector} | ||||
|                 =\begin{svector} r\cos(\alpha)\\ r\sin(\alpha)\\\end{svector} | ||||
|                 =\begin{svector} x\\ y\\\end{svector} | ||||
|                 =z$. | ||||
| 
 | ||||
|             Zur {\bfseries Eindeutigkeit}: | ||||
|             Seien $r_{i}\in(0,\infty)$, $\alpha_{i}\in[0,2\pi)$ | ||||
|             mit | ||||
|                 $r_{i}\cdot\begin{svector}  \cos(\alpha_{i})\\  \sin(\alpha_{i})\\\end{svector}=z$ | ||||
|                 $r_{i}\cdot\begin{svector} \cos(\alpha_{i})\\ \sin(\alpha_{i})\\\end{svector}=z$ | ||||
|             für $i\in\{1,2\}$. | ||||
|             \textbf{Zu zeigen:} $r_{1}=r_{2}$ und $\alpha_{1}=\alpha_{2}$. | ||||
|             Es gilt | ||||
| @ -4294,10 +4294,10 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Seien $z_{1},z_{2}\in\kmplx\ohne\{0\}$ mit Darstellungen | ||||
|             $z_{i}=r_{i}\cdot\begin{svector}  \cos(\alpha_{i})\\  \sin(\alpha_{i})\\\end{svector}$ | ||||
|             $z_{i}=r_{i}\cdot\begin{svector} \cos(\alpha_{i})\\ \sin(\alpha_{i})\\\end{svector}$ | ||||
|             für $i\in\{1,2\}$. | ||||
|             Dann gilt die Rechenregel | ||||
|                 $z_{1}z_{2}=r_{1}r_{2}\cdot\begin{svector}  \cos(\alpha_{1}+\alpha_{2})\\  \sin(\alpha_{1}+\alpha_{2})\\\end{svector}$. | ||||
|                 $z_{1}z_{2}=r_{1}r_{2}\cdot\begin{svector} \cos(\alpha_{1}+\alpha_{2})\\ \sin(\alpha_{1}+\alpha_{2})\\\end{svector}$. | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
| @ -4305,10 +4305,10 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
| 
 | ||||
|                 \begin{longmathe}[mc]{RCL} | ||||
|                     z_{1}z_{2} | ||||
|                         &= &\begin{svector}  \ReTeil(z_{1})\ReTeil(z_{2})-\ImTeil(z_{1})\ImTeil(z_{2})\\  \ReTeil(z_{1})\ImTeil(z_{2})+\ReTeil(z_{1})\ImTeil(z_{2})\\\end{svector}\\ | ||||
|                         &= &\begin{svector}  r_{1}\cos(\alpha_{1})\cdot r_{2}\cos(\alpha_{2})-r_{1}\sin(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})\\  r_{1}\cos(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})+r_{1}\cos(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})\\\end{svector}\\ | ||||
|                         &= &r_{1}r_{2}\begin{svector}  \cos(\alpha_{1})\cos(\alpha_{2})-\sin(\alpha_{1})\sin(\alpha_{2})\\  \cos(\alpha_{1})\sin(\alpha_{2})+\cos(\alpha_{1})\sin(\alpha_{2})\\\end{svector}\\ | ||||
|                         &= &r_{1}r_{2}\begin{svector}  \cos(\alpha_{1}+\alpha_{2})\\  \sin(\alpha_{1}+\alpha_{2})\\\end{svector}.\\ | ||||
|                         &= &\begin{svector} \ReTeil(z_{1})\ReTeil(z_{2})-\ImTeil(z_{1})\ImTeil(z_{2})\\ \ReTeil(z_{1})\ImTeil(z_{2})+\ReTeil(z_{1})\ImTeil(z_{2})\\\end{svector}\\ | ||||
|                         &= &\begin{svector} r_{1}\cos(\alpha_{1})\cdot r_{2}\cos(\alpha_{2})-r_{1}\sin(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})\\ r_{1}\cos(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})+r_{1}\cos(\alpha_{1})\cdot r_{2}\sin(\alpha_{2})\\\end{svector}\\ | ||||
|                         &= &r_{1}r_{2}\begin{svector} \cos(\alpha_{1})\cos(\alpha_{2})-\sin(\alpha_{1})\sin(\alpha_{2})\\ \cos(\alpha_{1})\sin(\alpha_{2})+\cos(\alpha_{1})\sin(\alpha_{2})\\\end{svector}\\ | ||||
|                         &= &r_{1}r_{2}\begin{svector} \cos(\alpha_{1}+\alpha_{2})\\ \sin(\alpha_{1}+\alpha_{2})\\\end{svector}.\\ | ||||
|                 \end{longmathe} | ||||
| 
 | ||||
|             Die letzte Vereinfachung folgt aus der trigonometrischen Additionsregel. | ||||
| @ -4317,9 +4317,9 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|     \item | ||||
|         \begin{claim*}[de Moivre] | ||||
|             Sei $z\in\kmplx\ohne\{0\}$ mit Darstellungen | ||||
|             $z=r\cdot\begin{svector}  \cos(\alpha)\\  \sin(\alpha)\\\end{svector}$. | ||||
|             $z=r\cdot\begin{svector} \cos(\alpha)\\ \sin(\alpha)\\\end{svector}$. | ||||
|             Dann gilt die Potenzregel | ||||
|                 $z^{n}=r^{n}\cdot\begin{svector}  \cos(n\alpha)\\  \sin(n\alpha)\\\end{svector}$ | ||||
|                 $z^{n}=r^{n}\cdot\begin{svector} \cos(n\alpha)\\ \sin(n\alpha)\\\end{svector}$ | ||||
|             für alle $n\in\ntrlpos$. | ||||
|         \end{claim*} | ||||
| 
 | ||||
| @ -4331,10 +4331,10 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|                     Die Gleichung gilt offensichtlich für $n=1$. | ||||
| 
 | ||||
|                 \item[\uwave{{\bfseries Induktionsvoraussetzung:}}] | ||||
|                     Sei $n>1$. Angenommen, $z^{n-1}=r^{n-1}\cdot\begin{svector}  \cos((n-1)\alpha)\\  \sin((n-1)\alpha)\\\end{svector}$. | ||||
|                     Sei $n>1$. Angenommen, $z^{n-1}=r^{n-1}\cdot\begin{svector} \cos((n-1)\alpha)\\ \sin((n-1)\alpha)\\\end{svector}$. | ||||
| 
 | ||||
|                 \item[\uwave{{\bfseries Induktionsschritt:}}] | ||||
|                     \textbf{Zu zeigen:} $z^{n}=r^{n}\cdot\begin{svector}  \cos(n\alpha)\\  \sin(n\alpha)\\\end{svector}$.\\ | ||||
|                     \textbf{Zu zeigen:} $z^{n}=r^{n}\cdot\begin{svector} \cos(n\alpha)\\ \sin(n\alpha)\\\end{svector}$.\\ | ||||
|                     Per rekursive Definition vom Potenzieren | ||||
|                     gilt zunächst $z^{n}=z^{n-1}\cdot z$ (Multiplikation innerhalb der Algebra $\kmplx$). | ||||
|                     Aufgabe 6-2(b) zur Folge gilt somit | ||||
| @ -4342,11 +4342,11 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|                         \begin{mathe}[mc]{rcl} | ||||
|                             z^{n}=z^{n-1}\cdot z | ||||
|                                 &\textoverset{IV}{=} | ||||
|                                     &r^{n-1}\cdot\begin{svector}  \cos((n-1)\alpha)\\  \sin((n-1)\alpha)\\\end{svector} | ||||
|                                     \cdot r\cdot\begin{svector}  \cos(\alpha)\\  \sin(\alpha)\\\end{svector}\\ | ||||
|                                     &r^{n-1}\cdot\begin{svector} \cos((n-1)\alpha)\\ \sin((n-1)\alpha)\\\end{svector} | ||||
|                                     \cdot r\cdot\begin{svector} \cos(\alpha)\\ \sin(\alpha)\\\end{svector}\\ | ||||
|                                 &\textoverset{(2b)}{=} | ||||
|                                     &r^{n-1}r\cdot\begin{svector}  \cos((n-1)\alpha+\alpha)\\  \sin((n-1)\alpha+\alpha)\\\end{svector}\\ | ||||
|                                 &= &r^{n}\cdot\begin{svector}  \cos(n\alpha)\\  \sin(n\alpha)\\\end{svector}.\\ | ||||
|                                     &r^{n-1}r\cdot\begin{svector} \cos((n-1)\alpha+\alpha)\\ \sin((n-1)\alpha+\alpha)\\\end{svector}\\ | ||||
|                                 &= &r^{n}\cdot\begin{svector} \cos(n\alpha)\\ \sin(n\alpha)\\\end{svector}.\\ | ||||
|                         \end{mathe} | ||||
| 
 | ||||
|                     Darum gilt die Gleichung für $n$. | ||||
| @ -4362,21 +4362,21 @@ Wir identifizieren $\kmplx$ mit $\reell^{2}$ mittel der Abbildungen | ||||
|                 $% | ||||
|                     z^{0} | ||||
|                     =1+\imageinh 0 | ||||
|                     =\begin{svector}  1\\  0\\\end{svector} | ||||
|                     =r^{0}\cdot\begin{svector}  \cos(0\alpha)\\  \sin(0\alpha)\\\end{svector}% | ||||
|                     =\begin{svector} 1\\ 0\\\end{svector} | ||||
|                     =r^{0}\cdot\begin{svector} \cos(0\alpha)\\ \sin(0\alpha)\\\end{svector}% | ||||
|                 $. | ||||
|             Für $n=-1$ liefert uns die Rechenregel für Multiplikation innerhalb $\kmplx$, | ||||
|             dass | ||||
|                 $r^{-1}\cdot\begin{svector}  \cos(-\alpha)\\  \sin(-\alpha)\\\end{svector}$ | ||||
|                 $r^{-1}\cdot\begin{svector} \cos(-\alpha)\\ \sin(-\alpha)\\\end{svector}$ | ||||
|             eine hinreichende Konstruktion für ein Inverses von $z$ ist, | ||||
|             und darum ist dies wegen Eindeutigkeit des Inverses gleich $z^{-1}$. | ||||
|             Für $n<0$ allgemein wenden wir schließlich | ||||
|                 $% | ||||
|                     z^{n} | ||||
|                     =(z^{-1})^{|n|} | ||||
|                     =(r^{-1}\cdot\begin{svector}  \cos(-\alpha)\\  \sin(-\alpha)\\\end{svector})^{|n|} | ||||
|                     =(r^{-1})^{|n|}\cdot\begin{svector}  \cos(|n|\cdot-\alpha)\\  \sin(|n|\cdot-\alpha)\\\end{svector} | ||||
|                     =r^{n}\cdot\begin{svector}  \cos(n\alpha)\\  \sin(n\alpha)\\\end{svector}% | ||||
|                     =(r^{-1}\cdot\begin{svector} \cos(-\alpha)\\ \sin(-\alpha)\\\end{svector})^{|n|} | ||||
|                     =(r^{-1})^{|n|}\cdot\begin{svector} \cos(|n|\cdot-\alpha)\\ \sin(|n|\cdot-\alpha)\\\end{svector} | ||||
|                     =r^{n}\cdot\begin{svector} \cos(n\alpha)\\ \sin(n\alpha)\\\end{svector}% | ||||
|                 $ | ||||
|             an. | ||||
|         \end{rem*} | ||||
| @ -4713,9 +4713,9 @@ Dies ist zufälligerweise auch das Nullelement von $V$. | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Sei $K=\rtnl$. Dann sind | ||||
|                 ${\mathbf{v}_{1}=\begin{svector}  1\\  2\\  2\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector}  3\\  2\\  1\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector}  2\\  1\\  -1\\\end{svector}}$ | ||||
|                 ${\mathbf{v}_{1}=\begin{svector} 1\\ 2\\ 2\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector} 3\\ 2\\ 1\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector} 2\\ 1\\ -1\\\end{svector}}$ | ||||
|             über $K$ \fbox{linear unabhängig}. | ||||
|         \end{claim*} | ||||
| 
 | ||||
| @ -4771,9 +4771,9 @@ Dies ist zufälligerweise auch das Nullelement von $V$. | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Sei $K=\mathbb{F}_{5}$. Dann sind | ||||
|                 ${\mathbf{v}_{1}=\begin{svector}  1\\  2\\  2\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector}  3\\  2\\  1\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector}  2\\  1\\  4\\\end{svector}}$ | ||||
|                 ${\mathbf{v}_{1}=\begin{svector} 1\\ 2\\ 2\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector} 3\\ 2\\ 1\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector} 2\\ 1\\ 4\\\end{svector}}$ | ||||
|             über $K$ \fbox{nicht linear unabhängig}. | ||||
|         \end{claim*} | ||||
| 
 | ||||
| @ -4814,9 +4814,9 @@ Dies ist zufälligerweise auch das Nullelement von $V$. | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Sei $K=\kmplx$. Dann sind | ||||
|                 ${\mathbf{v}_{1}=\begin{svector}  1\\  \imageinh\\  0\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector}  1+\imageinh\\  -\imageinh\\  1-2\imageinh\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector}  \imageinh\\  1-\imageinh\\  2-\imageinh\\\end{svector}}$ | ||||
|                 ${\mathbf{v}_{1}=\begin{svector} 1\\ \imageinh\\ 0\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector} 1+\imageinh\\ -\imageinh\\ 1-2\imageinh\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector} \imageinh\\ 1-\imageinh\\ 2-\imageinh\\\end{svector}}$ | ||||
|             über $K$ \fbox{nicht linear unabhängig}. | ||||
|         \end{claim*} | ||||
| 
 | ||||
| @ -4871,9 +4871,9 @@ Dies ist zufälligerweise auch das Nullelement von $V$. | ||||
| 
 | ||||
|         \begin{claim*} | ||||
|             Sei $K=\reell$. Dann sind | ||||
|                 ${\mathbf{v}_{1}=\begin{svector}  1\\  0\\  0\\  1\\  0\\  0\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector}  1\\  1\\  0\\  -1\\  1\\  -2\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector}  0\\  1\\  1\\  -1\\  2\\  -1\\\end{svector}}$ | ||||
|                 ${\mathbf{v}_{1}=\begin{svector} 1\\ 0\\ 0\\ 1\\ 0\\ 0\\\end{svector}}$, | ||||
|                 ${\mathbf{v}_{2}=\begin{svector} 1\\ 1\\ 0\\ -1\\ 1\\ -2\\\end{svector}}$, und | ||||
|                 ${\mathbf{v}_{3}=\begin{svector} 0\\ 1\\ 1\\ -1\\ 2\\ -1\\\end{svector}}$ | ||||
|             über $K$ \fbox{linear unabhängig}. | ||||
|         \end{claim*} | ||||
| 
 | ||||
| @ -5045,14 +5045,14 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             und betrachte die Vektoren | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rclqrcl} | ||||
|                     \mathbf{v}_{1}=\mathbf{v}_{2}=\ldots=\mathbf{v}_{n-1} &:= &\begin{svector}  1\\  0\\\end{svector} | ||||
|                     &\mathbf{v}_{n} &:= &\begin{svector}  0\\  1\\\end{svector}\\ | ||||
|                     \mathbf{v}_{1}=\mathbf{v}_{2}=\ldots=\mathbf{v}_{n-1} &:= &\begin{svector} 1\\ 0\\\end{svector} | ||||
|                     &\mathbf{v}_{n} &:= &\begin{svector} 0\\ 1\\\end{svector}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Dann gilt $\mathbf{v}_{n}\notin\vectorspacespan(\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n-1})$, | ||||
|             weil $\vectorspacespan(\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n-1}) | ||||
|                 =\vectorspacespan(\mathbf{v}_{1}) | ||||
|                 =\{\begin{svector}  t\\  0\\\end{svector}\mid t\in K\}\notni \begin{svector}  0\\  1\\\end{svector}$. | ||||
|                 =\{\begin{svector} t\\ 0\\\end{svector}\mid t\in K\}\notni \begin{svector} 0\\ 1\\\end{svector}$. | ||||
|             Andererseits sind die $n-1\geq 2$ Vektoren, | ||||
|                 $\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$ | ||||
|             per Wahl nicht linear unabhängig (weil die alle gleich sind). | ||||
| @ -5079,9 +5079,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             Sei $V=K^{2}$ und betrachte | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rclqrclqrcl} | ||||
|                     \mathbf{v}_{1} &:= &\begin{svector}  0\\  1\\\end{svector}, | ||||
|                     &\mathbf{v}_{2} &:= &\begin{svector}  1\\  0\\\end{svector}, | ||||
|                     &\mathbf{v}_{3} &:= &\begin{svector}  1\\  1\\\end{svector}.\\ | ||||
|                     \mathbf{v}_{1} &:= &\begin{svector} 0\\ 1\\\end{svector}, | ||||
|                     &\mathbf{v}_{2} &:= &\begin{svector} 1\\ 0\\\end{svector}, | ||||
|                     &\mathbf{v}_{3} &:= &\begin{svector} 1\\ 1\\\end{svector}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Es ist einfach zu sehen, dass die echten Teilsysteme | ||||
| @ -5269,13 +5269,13 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             \begin{mathe}[mc]{rcl} | ||||
|                 x_{2}:=1,\,x_{3}:=0,\,x_{4}:=0 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  1\\  1\\  0\\  0\\\end{svector},\\ | ||||
|                         &\mathbf{x}=\begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector},\\ | ||||
|                 x_{2}:=0,\,x_{3}:=1,\,x_{4}:=0 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  2\\  0\\  1\\  0\\\end{svector},\\ | ||||
|                         &\mathbf{x}=\begin{svector} 2\\ 0\\ 1\\ 0\\\end{svector},\\ | ||||
|                 x_{2}:=0,\,x_{3}:=0,\,x_{4}:=1 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  -2\\  0\\  0\\  1\\\end{svector}.\\ | ||||
|                         &\mathbf{x}=\begin{svector} -2\\ 0\\ 0\\ 1\\\end{svector}.\\ | ||||
|             \end{mathe} | ||||
|     \end{algorithm} | ||||
| 
 | ||||
| @ -5286,9 +5286,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             &= &\{\mathbf{x}\in V\mid A_{1}\mathbf{x}=\zerovector\} | ||||
|             &= &\vectorspacespan\underbrace{ | ||||
|                 \left\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  2\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  -2\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 2\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} -2\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \right\} | ||||
|             }_{=:B_{1}}\\ | ||||
|         \end{mathe} | ||||
| @ -5317,13 +5317,13 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             \begin{mathe}[mc]{rcl} | ||||
|                 x_{2}:=1,\,x_{3}:=0,\,x_{4}:=0 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  1\\  1\\  0\\  0\\\end{svector},\\ | ||||
|                         &\mathbf{x}=\begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector},\\ | ||||
|                 x_{2}:=0,\,x_{3}:=1,\,x_{4}:=0 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  1\\  0\\  1\\  0\\\end{svector},\\ | ||||
|                         &\mathbf{x}=\begin{svector} 1\\ 0\\ 1\\ 0\\\end{svector},\\ | ||||
|                 x_{2}:=0,\,x_{3}:=0,\,x_{4}:=1 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  1\\  0\\  0\\  1\\\end{svector}.\\ | ||||
|                         &\mathbf{x}=\begin{svector} 1\\ 0\\ 0\\ 1\\\end{svector}.\\ | ||||
|             \end{mathe} | ||||
|     \end{algorithm} | ||||
| 
 | ||||
| @ -5334,9 +5334,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             &= &\{\mathbf{x}\in V\mid A_{2}\mathbf{x}=\zerovector\} | ||||
|             &= &\vectorspacespan\underbrace{ | ||||
|                 \left\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  1\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  1\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 1\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 1\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \right\} | ||||
|             }_{=:B_{2}}\\ | ||||
|         \end{mathe} | ||||
| @ -5374,10 +5374,10 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             \begin{mathe}[mc]{rcl} | ||||
|                 x_{2}:=1,\,x_{4}:=0 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  1\\  1\\  0\\  0\\\end{svector},\\ | ||||
|                         &\mathbf{x}=\begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector},\\ | ||||
|                 x_{2}:=0,\,x_{4}:=1 | ||||
|                     &\Longrightarrow | ||||
|                         &\mathbf{x}=\begin{svector}  4\\  0\\  3\\  1\\\end{svector}.\\ | ||||
|                         &\mathbf{x}=\begin{svector} 4\\ 0\\ 3\\ 1\\\end{svector}.\\ | ||||
|             \end{mathe} | ||||
| 
 | ||||
|         gegeben. | ||||
| @ -5390,8 +5390,8 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|             &= &\{\mathbf{x}\in V\mid A_{3}\mathbf{x}=\zerovector\} | ||||
|             &= &\vectorspacespan\underbrace{ | ||||
|                 \left\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  4\\  0\\  3\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 4\\ 0\\ 3\\ 1\\\end{svector} | ||||
|                 \right\} | ||||
|             }_{=:B_{3}}\\ | ||||
|         \end{mathe} | ||||
| @ -5406,21 +5406,21 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|         \begin{mathe}[mc]{rcl} | ||||
|             U_{1}+U_{2} | ||||
|             &= &\vectorspacespan\big\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  2\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  -2\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 2\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} -2\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \big\} | ||||
|                 +\vectorspacespan\big\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  1\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  1\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 1\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 1\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \big\}\\ | ||||
|             &= &\vectorspacespan\big\{ | ||||
|                     \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                     \begin{svector}  2\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  -2\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector}  1\\  0\\  1\\  0\\\end{svector}, | ||||
|                     \begin{svector}  1\\  0\\  0\\  1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 2\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} -2\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                     \begin{svector} 1\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                     \begin{svector} 1\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \big\}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
| @ -5492,10 +5492,10 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
| 
 | ||||
|         \begin{mathe}[mc]{c} | ||||
|             \left\{ | ||||
|                 \begin{svector}  1\\  1\\  0\\  0\\\end{svector}, | ||||
|                 \begin{svector}  2\\  0\\  1\\  0\\\end{svector}, | ||||
|                 \begin{svector}  -2\\  0\\  0\\  1\\\end{svector} | ||||
|                 \begin{svector}  1\\  0\\  1\\  0\\\end{svector} | ||||
|                 \begin{svector} 1\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                 \begin{svector} 2\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                 \begin{svector} -2\\ 0\\ 0\\ 1\\\end{svector} | ||||
|                 \begin{svector} 1\\ 0\\ 1\\ 0\\\end{svector} | ||||
|             \right\}\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
| @ -5520,10 +5520,10 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
| 
 | ||||
|         \begin{mathe}[mc]{c} | ||||
|             \left\{ | ||||
|                 \begin{svector}  1\\  0\\  0\\  0\\\end{svector}, | ||||
|                 \begin{svector}  0\\  1\\  0\\  0\\\end{svector}, | ||||
|                 \begin{svector}  0\\  0\\  1\\  0\\\end{svector}, | ||||
|                 \begin{svector}  0\\  0\\  0\\  1\\\end{svector} | ||||
|                 \begin{svector} 1\\ 0\\ 0\\ 0\\\end{svector}, | ||||
|                 \begin{svector} 0\\ 1\\ 0\\ 0\\\end{svector}, | ||||
|                 \begin{svector} 0\\ 0\\ 1\\ 0\\\end{svector}, | ||||
|                 \begin{svector} 0\\ 0\\ 0\\ 1\\\end{svector} | ||||
|             \right\}\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
| @ -5853,8 +5853,8 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|     mit der kanonischen Basis | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqc} | ||||
|             \mathbf{v}_{1}:=\begin{svector}  1\\  0\\\end{svector}, | ||||
|             &\mathbf{v}_{2}:=\begin{svector}  0\\  1\\\end{svector}.\\ | ||||
|             \mathbf{v}_{1}:=\begin{svector} 1\\ 0\\\end{svector}, | ||||
|             &\mathbf{v}_{2}:=\begin{svector} 0\\ 1\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     \Cref{claim:2-3:ueb:8:ex:3} zufolge ist | ||||
| @ -5862,8 +5862,8 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|         \begin{mathe}[mc]{cqcqcqc} | ||||
|             \mathbf{v}_{1}, | ||||
|             &\mathbf{v}_{2}, | ||||
|             &\mathbf{v}_{3}:=\imageinh\cdot\mathbf{v}_{1} = \begin{svector}  \imageinh\\  0\\\end{svector}, | ||||
|             &\mathbf{v}_{4}:=\imageinh\cdot\mathbf{v}_{2} = \begin{svector}  0\\  \imageinh\\\end{svector}.\\ | ||||
|             &\mathbf{v}_{3}:=\imageinh\cdot\mathbf{v}_{1} = \begin{svector} \imageinh\\ 0\\\end{svector}, | ||||
|             &\mathbf{v}_{4}:=\imageinh\cdot\mathbf{v}_{2} = \begin{svector} 0\\ \imageinh\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     eine Basis für $W:=\kmplx^{2}$, wenn dies als $\reell$-Vektorraum betrachtet wird. | ||||
| @ -5887,11 +5887,11 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|     Seien | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqcqcqcqc} | ||||
|              u_{1} := \begin{svector}  1\\  2\\  -1\\  1\\\end{svector}, | ||||
|             &u_{2} := \begin{svector}  -1\\  -2\\  1\\  2\\\end{svector}, | ||||
|             &v_{1} := \begin{svector}  1\\  2\\  -1\\  -2\\\end{svector}, | ||||
|             &v_{2} := \begin{svector}  -1\\  3\\  0\\  -2\\\end{svector}, | ||||
|             &v_{3} := \begin{svector}  2\\  -1\\  -1\\  1\\\end{svector}.\\ | ||||
|              u_{1} := \begin{svector} 1\\ 2\\ -1\\ 1\\\end{svector}, | ||||
|             &u_{2} := \begin{svector} -1\\ -2\\ 1\\ 2\\\end{svector}, | ||||
|             &v_{1} := \begin{svector} 1\\ 2\\ -1\\ -2\\\end{svector}, | ||||
|             &v_{2} := \begin{svector} -1\\ 3\\ 0\\ -2\\\end{svector}, | ||||
|             &v_{3} := \begin{svector} 2\\ -1\\ -1\\ 1\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Vektoren in $\reell^{4}$ und setze | ||||
| @ -6136,9 +6136,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|     Seien | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqcqcqcqc} | ||||
|             \mathbf{v}_{1} := \begin{svector}  1\\  -2\\  3\\  1\\\end{svector}, | ||||
|             &\mathbf{v}_{2} := \begin{svector}  2\\  -5\\  7\\  0\\\end{svector}, | ||||
|             &\mathbf{v}_{3} := \begin{svector}  -2\\  6\\  -9\\  -3\\\end{svector}.\\ | ||||
|             \mathbf{v}_{1} := \begin{svector} 1\\ -2\\ 3\\ 1\\\end{svector}, | ||||
|             &\mathbf{v}_{2} := \begin{svector} 2\\ -5\\ 7\\ 0\\\end{svector}, | ||||
|             &\mathbf{v}_{3} := \begin{svector} -2\\ 6\\ -9\\ -3\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Vektoren in $\reell^{4}$ und sei $\phi:\reell^{3}\to\reell^{4}$ | ||||
| @ -6538,11 +6538,11 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
|     Seien | ||||
| 
 | ||||
|     \begin{mathe}[mc]{ccccc} | ||||
|         v_{1} = \begin{vector}  2\\  1\\\end{vector}, | ||||
|         &v_{2} = \begin{vector}  -1\\  1\\\end{vector}, | ||||
|         &w_{1} = \begin{vector}  1\\  1\\  0\\\end{vector}, | ||||
|         &w_{2} = \begin{vector}  1\\  -1\\  2\\\end{vector}, | ||||
|         &w_{3} = \begin{vector}  0\\  3\\  -1\\\end{vector}. | ||||
|         v_{1} = \begin{vector} 2\\ 1\\\end{vector}, | ||||
|         &v_{2} = \begin{vector} -1\\ 1\\\end{vector}, | ||||
|         &w_{1} = \begin{vector} 1\\ 1\\ 0\\\end{vector}, | ||||
|         &w_{2} = \begin{vector} 1\\ -1\\ 2\\\end{vector}, | ||||
|         &w_{3} = \begin{vector} 0\\ 3\\ -1\\\end{vector}. | ||||
|     \end{mathe} | ||||
| 
 | ||||
|     Zuerst beoachten wir dass | ||||
| @ -6614,9 +6614,9 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     \phi(x) | ||||
|                         &= &\begin{vector}  2x_{1}\\  -x_{2}\\\end{vector} | ||||
|                         &= &\begin{vector}  2\\  0\\\end{vector}x_{1} | ||||
|                             + \begin{vector}  0\\  -1\\\end{vector}x_{2} | ||||
|                         &= &\begin{vector} 2x_{1}\\ -x_{2}\\\end{vector} | ||||
|                         &= &\begin{vector} 2\\ 0\\\end{vector}x_{1} | ||||
|                             + \begin{vector} 0\\ -1\\\end{vector}x_{2} | ||||
|                         &= &\underbrace{ | ||||
|                             \begin{matrix}{rr} | ||||
|                               2 &0\\ | ||||
| @ -6700,9 +6700,9 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     \phi(x) | ||||
|                         &= &\begin{vector}  x_{1}+x_{2}\\  5x_{2}-x_{1}\\  2x_{1}-4x_{2}\\\end{vector} | ||||
|                         &= &\begin{vector}  1\\  -1\\  2\\\end{vector}x_{1} | ||||
|                             + \begin{vector}  1\\  5\\  -4\\\end{vector}x_{2} | ||||
|                         &= &\begin{vector} x_{1}+x_{2}\\ 5x_{2}-x_{1}\\ 2x_{1}-4x_{2}\\\end{vector} | ||||
|                         &= &\begin{vector} 1\\ -1\\ 2\\\end{vector}x_{1} | ||||
|                             + \begin{vector} 1\\ 5\\ -4\\\end{vector}x_{2} | ||||
|                         &= &\underbrace{ | ||||
|                             \begin{matrix}{rr} | ||||
|                               1 &1\\ | ||||
| @ -6810,10 +6810,10 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     \phi(x) | ||||
|                         &= &\begin{vector}  2x_{2}\\  3x_{1}-4x_{3}\\\end{vector} | ||||
|                         &= &\begin{vector}  0\\  3\\\end{vector}x_{1} | ||||
|                             + \begin{vector}  2\\  0\\\end{vector}x_{2} | ||||
|                             + \begin{vector}  0\\  -4\\\end{vector}x_{3} | ||||
|                         &= &\begin{vector} 2x_{2}\\ 3x_{1}-4x_{3}\\\end{vector} | ||||
|                         &= &\begin{vector} 0\\ 3\\\end{vector}x_{1} | ||||
|                             + \begin{vector} 2\\ 0\\\end{vector}x_{2} | ||||
|                             + \begin{vector} 0\\ -4\\\end{vector}x_{3} | ||||
|                         &= &\underbrace{ | ||||
|                             \begin{matrix}{rrr} | ||||
|                               0 &2 &0\\ | ||||
| @ -7062,20 +7062,20 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     M^{\cal{B}}_{\cal{B}}(\phi) | ||||
|                         &= &\begin{matrix}{ccccc} | ||||
|                         &= &\begin{matrix}{rrrrr} | ||||
|                           \choose{0}{0}a^{0} &\choose{1}{0}a^{1} &\choose{2}{0}a^{2} &\choose{3}{0}a^{3} &\choose{4}{0}a^{4}\\ | ||||
|                           0 &\choose{1}{1}a^{0} &\choose{2}{1}a^{1} &\choose{3}{1}a^{2} &\choose{4}{1}a^{3}\\ | ||||
|                           0 &0 &\choose{2}{2}a^{0} &\choose{3}{2}a^{1} &\choose{4}{2}a^{2}\\ | ||||
|                           0 &0 &0 &\choose{3}{3}a^{0} &\choose{4}{3}a^{1}\\ | ||||
|                           0 &0 &0 &0 &\choose{4}{4}a^{0}\\ | ||||
|                         \end{matrix}\\ | ||||
|                         &= &\begin{matrix}{ccccc} | ||||
|                         &= &\begin{matrix}{rrrrr} | ||||
|                           1 &a &a^{2} &a^{3} &a^{4}\\ | ||||
|                           0 &1 &2a &3a^{2} &4a^{3}\\ | ||||
|                           0 &0 &1 &3a &6a^{2}\\ | ||||
|                           0 &0 &0 &1 &4a\\ | ||||
|                           0 &0 &0 &0 &1\\ | ||||
|                         \end{matrix} | ||||
|                         \end{matrix}. | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Als \textbf{Alternative} können wir (davon ausgehend, dass $\phi$ linear ist) | ||||
| @ -7088,27 +7088,27 @@ Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche ve | ||||
|                             &= &(x+a)^{0} | ||||
|                             &= & | ||||
|                     1\cdot x^{0} | ||||
|                             &\cong &\begin{svector}  1\\  0\\  0\\  0\\  0\\\end{svector}\\ | ||||
|                             &\cong &\begin{svector} 1\\ 0\\ 0\\ 0\\ 0\\\end{svector}\\ | ||||
|                         \phi(x^{1}) | ||||
|                             &= &(x+a)^{1} | ||||
|                             &= & | ||||
|                     a\cdot x^{0} + 1\cdot x^{1} | ||||
|                             &\cong &\begin{svector}  a\\  1\\  0\\  0\\  0\\\end{svector}\\ | ||||
|                             &\cong &\begin{svector} a\\ 1\\ 0\\ 0\\ 0\\\end{svector}\\ | ||||
|                         \phi(x^{2}) | ||||
|                             &= &(x+a)^{2} | ||||
|                             &= & | ||||
|                     a^{2}\cdot x^{0} + 2a\cdot x^{1} + 1\cdot x^{2} | ||||
|                             &\cong &\begin{svector}  a^{2}\\  2a\\  1\\  0\\  0\\\end{svector}\\ | ||||
|                             &\cong &\begin{svector} a^{2}\\ 2a\\ 1\\ 0\\ 0\\\end{svector}\\ | ||||
|                         \phi(x^{3}) | ||||
|                             &= &(x+a)^{3} | ||||
|                             &= & | ||||
|                     a^{3}\cdot x^{0} + 3a^{2}\cdot x^{1} + 3a\cdot x^{2} + 1\cdot x^{3} | ||||
|                             &\cong &\begin{svector}  a^{3}\\  3a^{2}\\  3a\\  1\\  0\\\end{svector}\\ | ||||
|                             &\cong &\begin{svector} a^{3}\\ 3a^{2}\\ 3a\\ 1\\ 0\\\end{svector}\\ | ||||
|                         \phi(x^{4}) | ||||
|                             &= &(x+a)^{4} | ||||
|                             &= & | ||||
|                     a^{4}\cdot x^{0} + 4a^{3}\cdot x^{1} + 6a^{2}\cdot x^{2} + 4a\cdot x^{3} + 1\cdot x^{4} | ||||
|                             &\cong &\begin{svector}  a^{4}\\  4a^{3}\\  6a^{2}\\  4a\\  1\\\end{svector}\\ | ||||
|                             &\cong &\begin{svector} a^{4}\\ 4a^{3}\\ 6a^{2}\\ 4a\\ 1\\\end{svector}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Wenn wir diese Spalten in eine Matrix aufführen, | ||||
| @ -9120,7 +9120,7 @@ Für $x=[2]$ und $y=[3]$ gilt $x,y\neq [0]$ und aber $xy=[2\cdot 3]=[6]=[0]$. | ||||
|                     &= &\boxed{11}.\\ | ||||
|             \end{mathe} | ||||
| 
 | ||||
|             Also ist \fbox{$\mathbf{x}=\begin{svector}  10\\  11\\\end{svector}$} | ||||
|             Also ist \fbox{$\mathbf{x}=\begin{svector} 10\\ 11\\\end{svector}$} | ||||
|             die Lösung des LGS in $\intgr/13\intgr$. | ||||
|         \end{algorithm} | ||||
| 
 | ||||
| @ -9251,8 +9251,8 @@ Sei $L$ die Gerade $\{\mathbf{v}+t\mathbf{w}\mid t\in\reell\}\subseteq\reell^{3} | ||||
| wobei | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rclqrcl} | ||||
|         \mathbf{v} &= &\begin{svector}  -4\\  2\\  5\\\end{svector}, | ||||
|         &\mathbf{w} &= &\begin{svector}  2\\  -6\\  12\\\end{svector}.\\ | ||||
|         \mathbf{v} &= &\begin{svector} -4\\ 2\\ 5\\\end{svector}, | ||||
|         &\mathbf{w} &= &\begin{svector} 2\\ -6\\ 12\\\end{svector}.\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| \begin{enumerate}{\bfseries (1)} | ||||
| @ -9260,7 +9260,7 @@ wobei | ||||
|     \item | ||||
| 
 | ||||
|         \begin{claim*} | ||||
|             Der Punkt, $\mathbf{x}=\begin{svector}  -3\\  -1\\  11\\\end{svector}$, liegt in der Geraden, $L$. | ||||
|             Der Punkt, $\mathbf{x}=\begin{svector} -3\\ -1\\ 11\\\end{svector}$, liegt in der Geraden, $L$. | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
| @ -9276,7 +9276,7 @@ wobei | ||||
|                                 \mathbf{x}-\mathbf{v}=t\mathbf{w}\\ | ||||
|                         &\Longleftrightarrow | ||||
|                             &\exists{t\in\reell:~} | ||||
|                                 \begin{svector}  1\\  -3\\  6\\\end{svector}=t\begin{svector}  2\\  -6\\  12\\\end{svector}\\ | ||||
|                                 \begin{svector} 1\\ -3\\ 6\\\end{svector}=t\begin{svector} 2\\ -6\\ 12\\\end{svector}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Nun ist die letzte Aussage wahr, | ||||
| @ -9291,7 +9291,7 @@ wobei | ||||
|         Z.\,B. können wir | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcl} | ||||
|             \mathbf{w}_{\perp} &= &\begin{svector}  3\\  -1\\  0\\\end{svector}\\ | ||||
|             \mathbf{w}_{\perp} &= &\begin{svector} 3\\ -1\\ 0\\\end{svector}\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|         wählen. Dann gilt $\brkt{\mathbf{w},\mathbf{w}_{\perp}}=0$, | ||||
| @ -9467,7 +9467,7 @@ Wir betrachten die Komposition ${g\circ f:X\to Z}$ | ||||
| 
 | ||||
| \begin{claim*} | ||||
|     Seien $n\in\ntrlpos$ und $p\in\mathbb{P}$ mit $n<p\leq 2n$. | ||||
|     Dann gilt $p\divides\begin{svector}  2n\\  n\\\end{svector}$. | ||||
|     Dann gilt $p\divides\begin{svector} 2n\\ n\\\end{svector}$. | ||||
| \end{claim*} | ||||
| 
 | ||||
| \begin{proof} | ||||
| @ -9479,23 +9479,23 @@ Wir betrachten die Komposition ${g\circ f:X\to Z}$ | ||||
|                 \prod_{i=n+1}^{2n}i | ||||
|                 &= &\dfrac{\prod_{i=1}^{2n}i}{n!} | ||||
|                 &= &n!\dfrac{(2n)!}{n!(2n-n)!} | ||||
|                 &= &n!\begin{vector}  2n\\  n\\\end{vector}.\\ | ||||
|                 &= &n!\begin{vector} 2n\\ n\\\end{vector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Aus (i) und \eqcref{eq:1:quiz:5:ex:1} folgt also | ||||
|     (ii)~$p\divides \begin{svector}  2n\\  n\\\end{svector}\cdot n!$.\\ | ||||
|     Beachte, dass $p$ eine Primzahl ist und ${n!,\begin{svector}  2n\\  n\\\end{svector}\in\intgr}$.\\ | ||||
|     (ii)~$p\divides \begin{svector} 2n\\ n\\\end{svector}\cdot n!$.\\ | ||||
|     Beachte, dass $p$ eine Primzahl ist und ${n!,\begin{svector} 2n\\ n\\\end{svector}\in\intgr}$.\\ | ||||
|     Aus (ii) und \cite[Satz 3.4.14]{sinn2020} folgt also | ||||
|         $p\divides\begin{svector}  2n\\  n\\\end{svector}$ oder $p\divides n!$.\\ | ||||
|         $p\divides\begin{svector} 2n\\ n\\\end{svector}$ oder $p\divides n!$.\\ | ||||
| 
 | ||||
|     \fbox{Angenommen, $p\ndivides\begin{svector}  2n\\  n\\\end{svector}$.}\\ | ||||
|     \fbox{Angenommen, $p\ndivides\begin{svector} 2n\\ n\\\end{svector}$.}\\ | ||||
|     Dann muss laut des o.\,s. Arguments ${p\divides n!(=\prod_{i=1}^{n}i)}$ gelten.\\ | ||||
|     Eine weitere Anwendung von \cite[Satz 3.4.14]{sinn2020} liefert, | ||||
|     dass ${p\divides i_{0}}$ für ein $i_{0}\in\{1,2,\ldots,n\}$.\\ | ||||
|     Aber dann gilt $1\leq p\leq i_{0}\leq n$. | ||||
|     Das widerspricht der Voraussetzung, dass $n<p$.\\ | ||||
|     Darum stimmt die Annahme nicht. | ||||
|     Das heißt, $p\divides\begin{svector}  2n\\  n\\\end{svector}$. | ||||
|     Das heißt, $p\divides\begin{svector} 2n\\ n\\\end{svector}$. | ||||
| \end{proof} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| @ -9601,9 +9601,9 @@ Wir betrachten die Komposition ${g\circ f:X\to Z}$ | ||||
|             Seien | ||||
| 
 | ||||
|             \begin{mathe}[mc]{rclqrclqrcl} | ||||
|                 \mathbf{v}_{1} &= &\begin{svector}  1\\  2\\  2\\\end{svector} | ||||
|                 &\mathbf{v}_{2} &= &\begin{svector}  0\\  2\\  1\\\end{svector} | ||||
|                 &\mathbf{v}_{3} &= &\begin{svector}  2\\  1\\  1\\\end{svector}\\ | ||||
|                 \mathbf{v}_{1} &= &\begin{svector} 1\\ 2\\ 2\\\end{svector} | ||||
|                 &\mathbf{v}_{2} &= &\begin{svector} 0\\ 2\\ 1\\\end{svector} | ||||
|                 &\mathbf{v}_{3} &= &\begin{svector} 2\\ 1\\ 1\\\end{svector}\\ | ||||
|             \end{mathe} | ||||
| 
 | ||||
|             Vektoren im Vektorraum $\mathbb{F}_{5}^{3}$ über dem Körper $\mathbb{F}_{5}$. | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user