master > master: Formattierung
This commit is contained in:
		
							parent
							
								
									e80aa81b06
								
							
						
					
					
						commit
						dcd13faf36
					
				@ -5,8 +5,8 @@ Bestimme in jedem Falle, ob φ linear ist.
 | 
			
		||||
 | 
			
		||||
a)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 4·x1·x3 )
 | 
			
		||||
                    ( 10·x2   )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 4·x₁·x₃ )
 | 
			
		||||
                    ( 10·x₂   )
 | 
			
		||||
 | 
			
		||||
Wenn φ linear wäre, dann müsste φ(2, 0, 2) = 2·φ(1, 0, 1) gelten.
 | 
			
		||||
Aber:
 | 
			
		||||
@ -18,8 +18,8 @@ Also ist φ nicht linear, weil Homogenität verletzt wird.
 | 
			
		||||
 | 
			
		||||
b)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( x3² )
 | 
			
		||||
                    (  0   )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( x₃² )
 | 
			
		||||
                    (  0  )
 | 
			
		||||
 | 
			
		||||
Wenn φ linear wäre, dann müsste φ(0, 0, 8) = 8·φ(0, 0, 1) gelten.
 | 
			
		||||
Aber:
 | 
			
		||||
@ -31,21 +31,21 @@ Also ist φ nicht linear, weil Homogenität verletzt wird.
 | 
			
		||||
 | 
			
		||||
c)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( x3 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( x₃ )
 | 
			
		||||
                    (  0 )
 | 
			
		||||
 | 
			
		||||
--> linear
 | 
			
		||||
 | 
			
		||||
d)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 0 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 0 )
 | 
			
		||||
                    ( 0 )
 | 
			
		||||
 | 
			
		||||
--> linear
 | 
			
		||||
 | 
			
		||||
e)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 4  )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 4  )
 | 
			
		||||
                    ( 0  )
 | 
			
		||||
 | 
			
		||||
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2]
 | 
			
		||||
@ -54,15 +54,15 @@ Also ist φ nicht linear.
 | 
			
		||||
 | 
			
		||||
f)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 10·x3     )
 | 
			
		||||
                    (  -x2 + x1 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 10·x₃     )
 | 
			
		||||
                    (  -x₂ + x₁ )
 | 
			
		||||
 | 
			
		||||
linear!
 | 
			
		||||
 | 
			
		||||
g)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 1 - 10·x3 )
 | 
			
		||||
                    (  -x2 + x1 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 1 - 10·x₃ )
 | 
			
		||||
                    (  -x₂ + x₁ )
 | 
			
		||||
 | 
			
		||||
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2]
 | 
			
		||||
Aber φ(0) = (1, 0)ᵀ.
 | 
			
		||||
@ -70,7 +70,7 @@ Also ist φ nicht linear.
 | 
			
		||||
 | 
			
		||||
h)
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( exp(-(7·x2 + 8·x1)) )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( exp(-(7·x₂ + 8·x₁)) )
 | 
			
		||||
                    ( 0                   )
 | 
			
		||||
 | 
			
		||||
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2]
 | 
			
		||||
@ -79,15 +79,15 @@ Also ist φ nicht linear.
 | 
			
		||||
 | 
			
		||||
## §2. Aufgaben ähnlich zu ÜB 10-2 ##
 | 
			
		||||
 | 
			
		||||
Seien A = (u1, u2, u3) und B = (v1, v2),
 | 
			
		||||
Seien A = (u₁, u₂, u₃) und B = (v₁, v₂),
 | 
			
		||||
wobei
 | 
			
		||||
 | 
			
		||||
    u1 = (3,  0, 1)ᵀ
 | 
			
		||||
    u2 = (0, -1, 0)ᵀ
 | 
			
		||||
    u3 = (4,  0, 0)ᵀ
 | 
			
		||||
    u₁ = (3,  0, 1)ᵀ
 | 
			
		||||
    u₂ = (0, -1, 0)ᵀ
 | 
			
		||||
    u₃ = (4,  0, 0)ᵀ
 | 
			
		||||
 | 
			
		||||
    v1 = (4, 5)ᵀ
 | 
			
		||||
    v2 = (0, 1)ᵀ
 | 
			
		||||
    v₁ = (4, 5)ᵀ
 | 
			
		||||
    v₂ = (0, 1)ᵀ
 | 
			
		||||
 | 
			
		||||
Beachte:
 | 
			
		||||
 | 
			
		||||
@ -96,33 +96,33 @@ Beachte:
 | 
			
		||||
 | 
			
		||||
Sei nun φ : ℝ³ ⟶ ℝ² definiert durch
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 4·x1 - x3  )
 | 
			
		||||
                    ( 10·x2 + x1 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 4·x₁ - x₃  )
 | 
			
		||||
                    ( 10·x₂ + x₁ )
 | 
			
		||||
 | 
			
		||||
### Zur Linearität ###
 | 
			
		||||
Seien
 | 
			
		||||
 | 
			
		||||
    (x1,x2,x3), (x1',x2',x3') ∈ ℝ³
 | 
			
		||||
    (x₁,x₂,x₃), (x₁',x₂',x₃') ∈ ℝ³
 | 
			
		||||
    c, c' ∈ ℝ
 | 
			
		||||
 | 
			
		||||
**Zu zeigen:**
 | 
			
		||||
    φ(c(x1, x2, x3) +c'(x1',x2',x3')) = c·φ(x1, x2, x3) +c'·φ(x1',x2',x3')
 | 
			
		||||
    φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃')) = c·φ(x₁, x₂, x₃) +c'·φ(x₁', x₂', x₃')
 | 
			
		||||
 | 
			
		||||
Es gilt
 | 
			
		||||
 | 
			
		||||
    l. S. = φ(c(x1, x2, x3) +c'(x1',x2',x3'))
 | 
			
		||||
          = φ(c(x1·e1 + x2·e2 + x3·e3) +c'(x1'·e1 + x2'·e2 + x3'·e3))
 | 
			
		||||
          = φ((c·x1 + c'·x1)·e1 + (c·x2 + c'·x2)·e2 + (c·x3 + c'·x3)·e3)
 | 
			
		||||
          = φ(c·x1 + c'·x1', c·x2 + c'·x2', c·x3 + c'·x3')
 | 
			
		||||
    l. S. = φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃'))
 | 
			
		||||
          = φ(c(x₁·e1 + x₂·e2 + x₃·e3) +c'(x₁'·e1 + x₂'·e2 + x₃'·e3))
 | 
			
		||||
          = φ((c·x₁ + c'·x₁)·e1 + (c·x₂ + c'·x₂)·e2 + (c·x₃ + c'·x₃)·e3)
 | 
			
		||||
          = φ(c·x₁ + c'·x₁', c·x₂ + c'·x₂', c·x₃ + c'·x₃')
 | 
			
		||||
 | 
			
		||||
          = ( 4·(c·x1 + c'·x1') - (c·x3 + c'·x3')  )
 | 
			
		||||
            ( 10·(c·x2 + c'·x2') + (c·x1 + c'·x1') )
 | 
			
		||||
          = ( 4·(c·x₁ + c'·x₁') - (c·x₃ + c'·x₃')  )
 | 
			
		||||
            ( 10·(c·x₂ + c'·x₂') + (c·x₁ + c'·x₁') )
 | 
			
		||||
 | 
			
		||||
          = ( c·(4·x1 - x3)  + c'·(4·x1' - x3')  )
 | 
			
		||||
            ( c·(10·x2 + x1) + c'·(10·x2' + x1') )
 | 
			
		||||
          = ( c·(4·x₁ - x₃)  + c'·(4·x₁' - x₃')  )
 | 
			
		||||
            ( c·(10·x₂ + x₁) + c'·(10·x₂' + x₁') )
 | 
			
		||||
 | 
			
		||||
          = c·( 4·x1 - x3  ) + c'·( 4·x1' - x3' )
 | 
			
		||||
              ( 10·x2 + x1 )      ( 10·x2' + x1' )
 | 
			
		||||
          = c·( 4·x₁ - x₃  ) + c'·( 4·x₁' - x₃' )
 | 
			
		||||
              ( 10·x₂ + x₁ )      ( 10·x₂' + x₁' )
 | 
			
		||||
 | 
			
		||||
          = r. S.
 | 
			
		||||
 | 
			
		||||
@ -131,9 +131,9 @@ Darum ist φ linear.
 | 
			
		||||
### Darstellung ###
 | 
			
		||||
Zunächst beobachten wir:
 | 
			
		||||
 | 
			
		||||
    φ(x1, x2, x3) = ( 4   0   -1 ) ( x1 )
 | 
			
		||||
                    ( 1   10   0 ) ( x2 )
 | 
			
		||||
                                   ( x3 )
 | 
			
		||||
    φ(x₁, x₂, x₃) = ( 4   0   -1 ) ( x₁ )
 | 
			
		||||
                    ( 1   10   0 ) ( x₂ )
 | 
			
		||||
                                   ( x₃ )
 | 
			
		||||
                  = C·x
 | 
			
		||||
                  = φ_C(x)   siehe [Skript, Bsp 6.2.2],
 | 
			
		||||
 | 
			
		||||
@ -204,13 +204,14 @@ Darum gilt
 | 
			
		||||
 | 
			
		||||
## §3. Lineare Fortsetzung von partiell definierten Funktionen ##
 | 
			
		||||
 | 
			
		||||
Sei φ : ℝ^5 ⟶ ℝ³
 | 
			
		||||
Sei φ : ℝ⁵ ⟶ ℝ³
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Seien u1, u2, u3, u4, u5 eine Basis für ℝ^5.
 | 
			
		||||
Seien u₁, u₂, u₃, u₄, u₅ eine Basis für ℝ⁵.
 | 
			
		||||
Seien v₁, v₂, v₃ Vektoren in ℝ³.
 | 
			
		||||
Definiert werden
 | 
			
		||||
 | 
			
		||||
    φ(u1) = v1, φ(u2) = v2, φ(u4) = v3
 | 
			
		||||
    φ(u₁) = v₁, φ(u₂) = v₂, φ(u₄) = v₃
 | 
			
		||||
 | 
			
		||||
**Aufgabe:** Gibt es eine lineare Abbildung, die die o. s. Gleichungen erfüllen?
 | 
			
		||||
 | 
			
		||||
@ -218,11 +219,11 @@ Definiert werden
 | 
			
		||||
 | 
			
		||||
**Beweis:**
 | 
			
		||||
Setze
 | 
			
		||||
        φ(u3) := 0 (Nullvektor)
 | 
			
		||||
        φ(u5) := 0 (Nullvektor)
 | 
			
		||||
        φ(u₃) := 0 (Nullvektor)
 | 
			
		||||
        φ(u₅) := 0 (Nullvektor)
 | 
			
		||||
 | 
			
		||||
Da u1, u2, u3, u4, u5 eine Basis ist,
 | 
			
		||||
können wir für belieges x ∈ ℝ^5
 | 
			
		||||
Da u₁, u₂, u₃, u₄, u₅ eine Basis ist,
 | 
			
		||||
können wir für beliebiges x ∈ ℝ⁵
 | 
			
		||||
 | 
			
		||||
    φ(x) = ∑ c_i · φ(ui)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user