linalg2020/notes/vorbereitungKL2_2.md

191 lines
5.8 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Lineare Ausdehnung ##
Aufgabe 5b aus Klausur
i)
v1=... w1=...
v2=... w2=... wie in Aufgabe
Wähle v3 = (1 0 0)
Oder sage: „es gibt“ ein v3, so dass {v1,v2,v3} eine Basis von R^3 ist
Wähle w3 in R^3 beliebig
⟹ ex. lin Abb φ : R^3 ⟶ R^3 (siehe Satz 6.1.13)
mit
φ(v1) = w1
φ(v2) = w2
φ(v3) = w3
ii) Wir wissen, dass {w1, w2} lin unabh.
- also ex. w3 ∈ R^3 s. d. {w1, w2, w3} eine Basis von R^3 ist.
- lin Abb φ : R^3 ⟶ R^3 wie vorher erzeugen.
- bleibt zu zeigen, dass φ ein Isomorphismus ist.
Zz: φ ist injektiv.
[Dann folgt: φ bijektiv (weil VR beide 3-dimensional sind), also φ ein Isomorphismus.]
Sei also x ∈ Kern(φ).
Dann x = c1·v1 + c2·v2 + c3·v3
Also 0 = φ(x) = c1·w1 + c2·w2 + c3·w3
Also c1, c2, c3 = 0, weil {w1, w2, w3} eine Basis
Also x = c1·v1 + c2·v2 + c3·v3 = 0.
⟹ Damit haben wir gezeigt, dass Kern(φ) = {0}
(beachte, dass 0 immer im Kern ist)
⟹ φ injektiv.
ODER
Aus Korollar 6.1.15 folgt φ ein Iso, weil {w1, w2, w3} eine Basis ist.
iii) setze w3 = 0. Konstruiere φ wie oben.
Dann erfüllt φ die erwünschten Eigenschaften.
Und φ(v3) = w3 = 0, sodass Kern(φ) ≠ {0}, weil v3 ≠ 0.
Darum ist φ nicht injektiv und damit kein Isomorphismus.
**Empfehlung:** Mache _Übungsblatt 9 Aufgabe 2_!
## Zum Thema Rang <~~~> Inj/Surj
Wenn dim(W) = m, m eine endliche Zahl:
1.
φ injektiv ⟺ Kern(φ) = {0}
⟺ dim(Kern(φ)) = 0
⟺ dim(Bild(φ)) = dim(V)
⟺ Rang(φ) = dim(V)
⟺ Rang(φ) ≥ dim(V)
2.
φ surjektiv ⟺ Bild(φ) = W
⟺ dim(Bild(φ)) = dim(W) (=m)
⟺ Rang(φ) = dim(W)
⟺ Rang(φ) ≥ dim(W)
Der Punkt? Wir können Rang(φ) _berechnen_.
Anwendung: z. B. wenn Bild(φ) = lin{w1, w2, ..., w_r} und {w1, w2, ..., w_r} lin unabh,
dann gilt offensichtlich dim(Bild(φ)) = r.
Und falls wir nicht wissen, ob {w1, w2, ..., w_r} lin unabh ist,
dann wissen wir dennoch mindestens, dass dim(Bild(φ)) ≤ r,
weil wir eine Teilmenge aus ≤r Vektoren finden können,
die eine Basis für Bild(φ) bilden.
## MATRIZEN ##
Matrizen werden mal so in Bezug auf ihre Einträge folgendermaßen formal dargestellt:
A = ( a_ij ) eine m x n Matrix
B = ( b_ij ) eine m x n Matrix
Mit dieser Darstellung kann man dann Ergebnisse von algebraischen Operationen analog darstellen,
wie z. B.
A + 5B = ( a_ij + 5b_ij ).
Seien
A = ( a_ij ) eine m x n Matrix
¯
B = ( b_ij ) eine n x l Matrix
¯
Zur Matrixmultiplikation müssen die „innere Dimensionen“ übereinstimmen,
um die Operation auszuführen (wenn die quadratisch sind, dann gilt das ohnehin).
Es gilt
n
A·B = ( c_ij ), wobei c_ij = ∑ a_ik b_kj
k=1
Hingegen (solange m=l) gilt
l
B·A = ( d_ij ), wobei d_ij = ∑ b_ik a_kj
k=1
## BEWEISE ##
### Übungsblatt 3 Aufgabe 2d) ###
Behauptung. A,B ⊆ Y gilt f^-1(A∩B) = f^1(A) ∩ f^1(B).
Beweis.
(⊆) Sei x ∈ f^-1(A∩B) beliebig.
Zu zeigen: x ∈ f^1(A) ∩ f^1(B).
D. h. wir müssen zeigen,
dass x ∈ f^1(A) und x ∈ f^1(B).
Es gilt
x ∈ f^-1(A∩B)
⟹ f(x) ∈ A ∩ B (per Definition von f^-1)
⟹ f(x) ∈ A und f(x) ∈ B
⟹ x ∈ f^-1(A) und x ∈ f^-1(B) (per Definition von f^-1)
Darum gilt x ∈ r. S.
(⊇) Sei x ∈ f^1(A) ∩ f^1(B).
D. h. x ∈ f^1(A) und x ∈ f^1(B).
Zu zeigen: x ∈ f^-1(A∩B).
Es gilt
x ∈ f^-1(A) und x ∈ f^-1(B)
⟹ f(x) ∈ A und f(x) ∈ B (per Definition von f^-1)
⟹ f(x) ∈ A ∩ B
⟹ x ∈ f^-1(A∩B) (per Definition von f^-1)
Darum gilt x ∈ l. S.
QED.
### Übungsblatt 9 Aufgabe 3 ###
Es seien U, V und W Vektorräume über einem Körper K.
Seien φ: U ⟶ V und ψ : V ⟶ W lineare Abbildungen.
Beh. ψ ◦ φ injektiv ⟺ (φ injektiv ist + Kern(ψ) ∩ Bild(φ) = {0}).
Beweis.
(⟹) Angenommen, ψ ◦ φ injektiv.
Zu zeigen:
i) φ injektiv
ii) Kern(ψ) ∩ Bild(φ) = {0}.
Zu i): Zu zeigen: Kern(φ) = {0}.
Sei also x ∈ U mit φ(x) = 0.
Dann (ψ ◦ φ)(x) = ψ(φ(x)) = ψ(0) = 0.
Also x ∈ Kern(ψ ◦ φ) und per ANNAHME Kern(ψ ◦ φ) = {0} (weil injektiv).
Also x = 0.
Darum haben wir gezeigt, dass Kern(φ) ⊆ {0}.
Also Kern(φ) = {0} (weil 0 immer im Kern ist).
Zu ii): Zu zeigen Kern(ψ) ∩ Bild(φ) ⊆ {0} ( ⊇ gilt immer, weil 0 immer im Kern und Bild ).
Sei also x ∈ Kern(ψ) ∩ Bild(φ).
Zu zeigen: x = 0.
Also x ∈ Kern(ψ) und x ∈ Bild(φ).
Also ψ(x) = 0 und x = φ(y) für ein y ∈ U.
Also ψ(φ(y)) = 0.
Also y ∈ Kern(ψ ◦ φ) und per ANNAHME Kern(ψ ◦ φ) = {0} (weil injektiv).
Also y = 0.
Also x = φ(y) = φ(0) = 0.
(⟸) Angenommen,
i) φ injektiv
ii) Kern(ψ) ∩ Bild(φ) = {0}
Zu zeigen: ψ ◦ φ injektiv.
Es reicht also aus zu zeigen, dass
Kern(ψ ◦ φ) = {0}.
Sei also x ∈ U mit (ψ ◦ φ)(x) = 0.
Zu zeigen: x = 0.
...
... [Annahme i + ii iwo gebrauchen]
...
Also x = 0.
QED