diff --git a/notebooks/week-10.ipynb b/notebooks/week-10.ipynb
new file mode 100644
index 0000000..825f8c5
--- /dev/null
+++ b/notebooks/week-10.ipynb
@@ -0,0 +1,236 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Woche 10 #\n",
+ "\n",
+ "Diese Wochen beschäftigen wir uns mit Matrizen und Vektoren.\n",
+ "In diesem Notebook rechnen wir ein paar (Teil)aufgaben aus dem ÜB."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'''IMPORTS'''\n",
+ "import os;\n",
+ "import sys; \n",
+ "\n",
+ "# NOTE: need this to force jupyter to reload imports:\n",
+ "for key in list(sys.modules.keys()):\n",
+ " if key.startswith('src.'):\n",
+ " del sys.modules[key];\n",
+ "\n",
+ "os.chdir(os.path.dirname(_dh[0]));\n",
+ "sys.path.insert(0, os.getcwd());\n",
+ "\n",
+ "from src.thirdparty.maths import *;\n",
+ "from src.thirdparty.misc import *;\n",
+ "from src.thirdparty.render import *;\n",
+ "from src.maths.diagrams import *;\n",
+ "\n",
+ "np.random.seed(8007253); # zur Wiederholbarkeit"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'''BEISPIEL-SIGNAL'''\n",
+ "n = 100;\n",
+ "u = np.zeros((n,), dtype=complex);\n",
+ "u[8] = -0.7\n",
+ "u[58] = 1j * sqrt(2);\n",
+ "\n",
+ "display_signal(u, 'Beispiel eines Vektors als Signal dargestellt');"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'''SEMINARAUFGABE 10.4 a)'''\n",
+ "n = 3;\n",
+ "t = linspace(0, n-1, n);\n",
+ "i, j = np.meshgrid(t, t);\n",
+ "theta = 2*pi * i * j / n;\n",
+ "\n",
+ "# definiere die Matrix F_n + die Vektoren u_nk\n",
+ "F_n = (1/sqrt(n)) * exp(-1j * theta);\n",
+ "u_n = [ (1/sqrt(n)) * exp(1j * theta[:, k]) for k in range(n) ];\n",
+ "\n",
+ "print(dedent(\n",
+ " f'''\n",
+ " Matrix:\n",
+ "\n",
+ " F_{n} = \\n{np.round(F_n, 3)}\n",
+ " '''\n",
+ "));\n",
+ "print('');\n",
+ "\n",
+ "# NOTE: Programmiersprachen können nicht exakt berechnen.\n",
+ "# Darum entstehen winzige Fehler, die sich durch Runden entfernen lassen.\n",
+ "print('Matrix-Vektor-Produkte:');\n",
+ "for k in range(n):\n",
+ " result = F_n @ u_n[k];\n",
+ " print(dedent(\n",
+ " f'''\n",
+ "\n",
+ " u_{{n {k}}} = {np.round(u_n[k], 3)}\n",
+ " F_n · u_{{n {k}}} = {np.round(result, 3)}\n",
+ " '''\n",
+ " ));"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Seminaraufgabe 10.4 b) ##\n",
+ "\n",
+ "Für $i\\in\\{0,1,\\ldots,n-1\\}$ ist die $i$-te von $\\mathcal{F}_{n}\\,u_{n,k}$\n",
+ "\n",
+ "$$\n",
+ " (\\mathcal{F}_{n}\\,u_{n,k})_{i}\n",
+ " = \\sum_{j=0}^{n-1}\n",
+ " (\\mathcal{F}_{n})_{ij}\\,(u_{n,k})_{j}\n",
+ " = \\sum_{j=0}^{n-1}\n",
+ " \\tfrac{1}{\\sqrt{n}}\n",
+ " \\exp(-\\imath\\tfrac{2\\pi\\,ij}{n})\n",
+ " \\cdot\n",
+ " \\tfrac{1}{\\sqrt{n}}\n",
+ " \\exp(\\imath\\tfrac{2\\pi\\,kj}{n})\n",
+ " = \\frac{1}{n}\\sum_{j=0}^{n-1}\n",
+ " \\underbrace{\n",
+ " \\exp(\\imath\\tfrac{2\\pi\\,(k-i)j}{n})\n",
+ " }_{= r^{j}}\n",
+ "$$\n",
+ "\n",
+ "wobei $r \\colonequals \\exp(\\imath\\tfrac{2\\pi\\,(k-i)}{n})$.\n",
+ "Wir haben, dass\n",
+ " $r = 1$\n",
+ " $\\Leftrightarrow$\n",
+ " $\\tfrac{k-i}{n} \\in \\Z$\n",
+ " $\\Leftrightarrow$\n",
+ " $i = k$,\n",
+ "da $0\\leq i,k \\leq n-1$.\n",
+ "
\n",
+ "Es gilt außerdem $r^{n} = \\exp(\\imath 2\\pi\\,(k-i)) = 1$.\n",
+ "
\n",
+ "Aus der o.s. Berechnung erhält man also\n",
+ "\n",
+ "$$\n",
+ " (\\mathcal{F}_{n}\\,u_{n,k})_{i}\n",
+ " = \\tfrac{1}{n}\\displaystyle\\sum_{j=0}^{n-1}r^{j}\n",
+ " = \\tfrac{1}{n}\n",
+ " \\begin{cases}\n",
+ " \\displaystyle\\sum_{j=0}^{n-1}1 &: &i = k\\\\\n",
+ " \\frac{1 - r^{n}}{1 - r} &: &\\text{sonst}\\\\\n",
+ " \\end{cases}\n",
+ " = \\tfrac{1}{n}\n",
+ " \\begin{cases}\n",
+ " n &: &i = k\\\\\n",
+ " \\frac{1 - 1}{1 - r} &: &\\text{sonst}\\\\\n",
+ " \\end{cases}\n",
+ " = \\delta_{ik}.\n",
+ "$$\n",
+ "\n",
+ "Darum $\n",
+ " \\mathcal{F}_{n}\\,u_{n,k}\n",
+ " = \\left(\\begin{matrix}\n",
+ " 0\\\\\n",
+ " 0\\\\\n",
+ " \\vdots\\\\\n",
+ " 1\\\\\n",
+ " \\vdots\\\\\n",
+ " 0\\\\\n",
+ " \\end{matrix}\\right)\n",
+ " \\begin{matrix}\n",
+ " \\\\\n",
+ " \\\\\n",
+ " \\\\\n",
+ " \\leftarrow k\\\\\n",
+ " \\\\\n",
+ " \\\\\n",
+ " \\end{matrix}\n",
+ " = \\mathbf{e}_{k}\n",
+ "$.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'''SEMINARAUFGABE 10.4 d)'''\n",
+ "n = 4;\n",
+ "t = linspace(0, n-1, n);\n",
+ "i, j = np.meshgrid(t, t);\n",
+ "theta = 2*pi * i * j / n;\n",
+ "\n",
+ "# definiere die Matrix F_n + die Vektoren u_nk\n",
+ "F_n = (1/sqrt(n)) * exp(-1j * theta);\n",
+ "u_n = [ (1/sqrt(n)) * exp(1j * theta[:, k]) for k in range(n) ];\n",
+ "\n",
+ "# Eingabe des Vektors:\n",
+ "F_mal_u = np.asarray([100, -3, 0, -3]); # = F_n @ u\n",
+ "\n",
+ "'''\n",
+ "NOTE: Folgende Koeffizienten wurden falsch erraten.\n",
+ "TODO: Wie lauten die richtigen Werte? -> Aufgabe!\n",
+ "'''\n",
+ "c = [10,10,40,50];\n",
+ "\n",
+ "# Aufschreibung des Signals »bzgl. der harmonischen Basis«:\n",
+ "# u = c[0]u_n[0] + c[1]u_n[1] + c[2]u_n[2] + c[3]u_n[3]\n",
+ "u_guess = sum([ c[k] * u_n[k] for k in range(n) ]);\n",
+ "\n",
+ "# Anzeige der Lösung:\n",
+ "display_signal(u_guess, 'Geschätztes Signal');\n",
+ "\n",
+ "# Verifikation von Lösung:\n",
+ "print(dedent(\n",
+ " f'''\n",
+ " %error := ‖u_guess – u‖ / ‖u‖\n",
+ " = ‖F_n · (u_guess – u)‖ / ‖F_n · u‖\n",
+ " ... wieso?? [Stichwort: unitär]\n",
+ " = ‖F_n · u_guess – F_n · u‖ / ‖F_n · u‖\n",
+ " = {linalg.norm(F_n @ u_guess - F_mal_u)/linalg.norm(F_mal_u):.2%}\n",
+ " '''\n",
+ "));\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}