notebooks/src/examples_dilations.py

286 lines
8.5 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUTHOR: Raj Dahya
# CREATED: 05.09.2022
# DEPARTMENT: Fakult\"at for Mathematik und Informatik
# INSTITUTE: Universit\"at Leipzig
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import re;
import math
from tkinter import E;
import numpy as np;
from typing import Generator;
import itertools;
from tabulate import tabulate;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CONSTANTS + SETTINGS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
np.set_printoptions(precision=3);
MACHINE_EPS = 0.5e-12;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# SECONDARY METHODS - Generate C0-Semigroup Generator
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def generate_semigroup_generator(
shape: list[int, int],
rational: bool = False,
base: int = 2,
alpha: float = 1,
) -> np.ndarray:
'''
Creates bounded generators for d commuting C0-semigroups as in the paper (cf. §5.3).
@inputs
- `shape` - <int, int> Desired shape of output.
- `rational` - <bool> Whether or not entries are to be rational.
- `base` - <int> If `rational = True`, fixes the denominator of the rational numbers.
- `alpha` - <float> Additional parameter to scale the D_i operators.
NOTE: One can choose any value of `α (1/d, \infty)`.
By choosing any value `α 1/(d-1)`, by the computations in Proposition 5.3
one can force that the S_TK operators only fail to be positive when |K| > d-1.
@returns
Randomly created bounded generators for C0-semigroups as in the paper (cf. §5.3).
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
assert m % 2 == 0, 'dimensions must be divisible by 2';
N = int(m/2);
I = generate_op_identity(shape=[2*N, 2*N]);
O = generate_op_zero(shape=[N, N]);
U = generate_op_unitary(
shape = [N, N],
rational = rational,
base = base,
);
D = alpha * U;
A = -I + np.vstack([
np.hstack([ O, -2*D ]),
np.hstack([ O, O ]),
]);
return A;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# SECONDARY METHODS - Compute spectral bounds
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def spec_bounds(A: np.ndarray) -> float:
'''
Computes the spectral bounds of an operator:
```tex
\max_{i} \max \{ Re \lambda : \lambda \in \sigma(A_{i}) \}
```
'''
sigma_A = np.linalg.eigvals(A);
return max(np.real(sigma_A));
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# SECONDARY METHODS - Generate Dissipation Operator
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def dissipation_operators(
shape: list[int, int],
A: list[np.ndarray],
) -> tuple[
list[tuple[
list[int],
np.ndarray,
float,
]],
float,
]:
'''
Computes the dissipation operators and their minimum spectral values.
'''
d = len(A);
indexes = list(range(d));
data = [];
beta = np.inf;
for K in power_set(indexes):
S_TK, eig_K = dissipation_operator(shape=shape, A=A, K=K);
data.append((K, S_TK, eig_K));
beta = min(eig_K, beta);
return data, beta;
def dissipation_operator(
shape: list[int, int],
A: list[np.ndarray],
K: list[int],
) -> tuple[np.ndarray, float]:
'''
Computes the dissipation operator `S_{T,K}` and its minimum spectral values.
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
N = m;
O = generate_op_zero(shape=[N, N]);
I = generate_op_identity(shape=[N, N]);
S = O;
for C, C_ in partitions_two(K):
A_C = I;
A_C_ = I;
for i in C:
A_C = A_C @ -A[i];
for i in C_:
A_C_ = A_C_ @ -A[i];
S += A_C.conj().T @ A_C_;
S = (1/2**len(K)) * S;
eig = min(np.real(np.linalg.eigvals(S)));
return S, eig;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MISCELLANEOUS METHODS - SETS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def power_set(K: list[int]) -> Generator[list[int], None, None]:
'''
Iterates through all subsets `C` of a set `K`.
'''
n = len(K);
for ch in itertools.product(*([[0,1]]*n)):
yield [ K[i] for i in range(n) if ch[i] == 1 ];
def partitions_two(K: list[int]) -> Generator[tuple[list[int],list[int]], None, None]:
'''
Iterates through all partitions `[C1, C2]` of a set `K` of size 2.
'''
n = len(K);
for ch in itertools.product(*([[0,1]]*n)):
yield (
[ K[i] for i in range(n) if ch[i] == 1 ],
[ K[i] for i in range(n) if ch[i] == 0 ],
);
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MISCELLANEOUS METHODS - BASIC OPERATORS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def generate_op_zero(shape: list[int, int]) -> np.ndarray:
'''
Returns the zero operator with the right shape and type.
'''
sh = tuple(shape)
O = np.zeros(sh).astype(complex);
return O;
def generate_op_identity(shape: list[int, int]) -> np.ndarray:
'''
Returns the identity operator with the right shape and type.
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
I = np.eye(m).astype(complex);
return I;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MISCELLANEOUS METHODS - GENERATE RANDOM MATRICES
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def generate_op_selfadjoint(
shape: list[int, int],
bound: float = 1.,
) -> np.ndarray:
'''
Generates a self-adjoint operator.
@inputs
- `shape` - <int, int> Desired shape of the output.
- `bound` - <float> The desired norm of output operator.
@returns
A randomly generated self-adjoint operator as a matrix.
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
A = np.random.random(sh) + 1j * np.random.random(sh);
S = (A + A.conj().T)/2.;
M = np.linalg.norm(S);
if M > 0:
S = (bound/M) * S;
return S;
def generate_onb(shape: list[int, int]) -> np.ndarray:
'''
Generates an ONB.
@inputs
- `shape` - <int, int> Desired shape of matrices.
@returns
An ONB for an n-dim complex Hilbert space as a matrix.
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
N = m;
O = generate_op_zero(shape=[N, N]);
P = O;
for k in range(N):
while True:
v = np.random.random((N,)) + 1j * np.random.random((N,));
for i in range(k):
# NOTE: np.inner does not work.
coeff = np.sum([ v[j] * P[j, i].conj() for j in range(N)]);
v -= coeff * P[:, i];
norm_v = np.linalg.norm(v);
if norm_v > 0.:
P[:, k] = v / norm_v;
break;
return P;
def generate_op_unitary(
shape: list[int, int],
rational: bool = False,
base: int = 2,
) -> np.ndarray:
'''
Generates a unitary operator.
@inputs
- `shape` - <int, int> Desired shape of output.
- `rational` - <bool> Whether or not entries are to be rational.
- `base` - <int> If `rational = True`, fixes the denominator of the rational numbers.
@returns
A randomly generated unitary operator as a matrix.
'''
sh = tuple(shape)
m, n = sh;
assert m == n, 'must be square';
N = m;
P = generate_onb(shape=shape);
if rational:
theta = 2 * np.pi * np.random.randint(low=0, high=base, size=N) / base;
else:
theta = 2 * np.pi * np.random.random(size=N);
D = np.diag(np.exp(1j * theta));
U = P @ D @ P.conj().T;
return U;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MISCELLANEOUS METHODS - Get user input
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def ask_confirmation(message: str):
while True:
answer = input(f'{message} (y/n): ');
if re.match(pattern='^y(es)?|1$', string=answer, flags=re.IGNORECASE):
return True;
elif re.match(pattern='^n(o)?|0$', string=answer, flags=re.IGNORECASE):
return False;