314 lines
10 KiB
Plaintext
314 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "raw",
|
|
"id": "9e1ef849",
|
|
"metadata": {},
|
|
"source": [
|
|
"---\n",
|
|
"format:\n",
|
|
" html:\n",
|
|
" include-in-header:\n",
|
|
" text: |\n",
|
|
" <script type=\"application/javascript\">\n",
|
|
" window.PlotlyConfig = {MathJaxConfig: 'local'}\n",
|
|
" </script>\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "beff12c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Ein Beispiel zur Stabilität von Gleitkommaarithmetik\n",
|
|
"\n",
|
|
"## Berechnung von $\\pi$ nach Archimedes\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a7810264",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#| error: false\n",
|
|
"#| echo: false\n",
|
|
"#| output: false\n",
|
|
"using PlotlyJS, Random\n",
|
|
"using HypertextLiteral\n",
|
|
"using JSON, UUIDs\n",
|
|
"using Base64\n",
|
|
"\n",
|
|
"\n",
|
|
"## see https://github.com/JuliaPlots/PlotlyJS.jl/blob/master/src/PlotlyJS.jl\n",
|
|
"## https://discourse.julialang.org/t/encode-a-plot-to-base64/27765/3\n",
|
|
"function IJulia.display_dict(p::PlotlyJS.SyncPlot)\n",
|
|
" Dict(\n",
|
|
" # \"application/vnd.plotly.v1+json\" => JSON.lower(p),\n",
|
|
" # \"text/plain\" => sprint(show, \"text/plain\", p),\n",
|
|
" \"text/html\" => let\n",
|
|
" buf = IOBuffer()\n",
|
|
" show(buf, MIME(\"text/html\"), p)\n",
|
|
" #close(buf)\n",
|
|
" #String(resize!(buf.data, buf.size))\n",
|
|
" String(take!(buf))\n",
|
|
" end,\n",
|
|
" \"image/png\" => let\n",
|
|
" buf = IOBuffer()\n",
|
|
" buf64 = Base64EncodePipe(buf)\n",
|
|
" show(buf64, MIME(\"image/png\"), p)\n",
|
|
" close(buf64)\n",
|
|
" #String(resize!(buf.data, buf.size))\n",
|
|
" String(take!(buf))\n",
|
|
" end,\n",
|
|
"\n",
|
|
" )\n",
|
|
" end\n",
|
|
"\n",
|
|
" function Base.show(io::IO, mimetype::MIME\"text/html\", p::PlotlyJS.SyncPlot)\n",
|
|
" uuid = string(UUIDs.uuid4())\n",
|
|
" show(io,mimetype,@htl(\"\"\"\n",
|
|
" <div style=\"height: auto\" id=\\\"$(uuid)\\\"></div>\n",
|
|
" <script>\n",
|
|
" require(['../js/plotly-latest.min.js'], function(plotly) { \n",
|
|
" plotly.newPlot($(uuid),\n",
|
|
" $(HypertextLiteral.JavaScript(json(p.plot.data))),\n",
|
|
" $(HypertextLiteral.JavaScript(json(p.plot.layout))),{responsive: true});\n",
|
|
" });\n",
|
|
" </script>\n",
|
|
"\"\"\"))\n",
|
|
"end "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8d4bd1ab",
|
|
"metadata": {},
|
|
"source": [
|
|
"Eine untere Schranke für $2\\pi$, den Umfang des Einheitskreises, erhält man durch die\n",
|
|
"Summe der Seitenlängen eines dem Einheitskreis eingeschriebenen regelmäßigen $n$-Ecks.\n",
|
|
" Die Abbildung links zeigt, wie man beginnend mit einem Viereck der Seitenlänge $s_4=\\sqrt{2}$ die Eckenzahl iterativ verdoppelt.\n",
|
|
"\n",
|
|
":::{.narrow}\n",
|
|
"\n",
|
|
"| Abb. 1 | Abb.2 |\n",
|
|
"| :-: | :-: |\n",
|
|
"| ![](../images/pi1.png) | ![](../images/pi2.png) |\n",
|
|
": {tbl-colwidths=\"[57,43]\"}\n",
|
|
"\n",
|
|
":::\n",
|
|
"\n",
|
|
"\n",
|
|
"Die zweite Abbildung zeigt die Geometrie der Eckenverdoppelung.\n",
|
|
"\n",
|
|
"Mit\n",
|
|
"$|\\overline{AC}|= s_{n},\\quad |\\overline{AB}|= |\\overline{BC}|= s_{2n},\\quad |\\overline{MN}| =a, \\quad |\\overline{NB}| =1-a,$ liefert Pythagoras für die Dreiecke $MNA$ und\n",
|
|
" $NBA$ jeweils\n",
|
|
"$$\n",
|
|
" a^2 + \\left(\\frac{s_{n}}{2}\\right)^2 = 1\\qquad\\text{bzw.} \\qquad\n",
|
|
" (1-a)^2 + \\left(\\frac{s_{n}}{2}\\right)^2 = s_{2n}^2\n",
|
|
"$$\n",
|
|
"Elimination von $a$ liefert die Rekursion\n",
|
|
"$$\n",
|
|
" s_{2n} = \\sqrt{2-\\sqrt{4-s_n^2}} \\qquad\\text{mit Startwert}\\qquad\n",
|
|
" s_4=\\sqrt{2}\n",
|
|
"$$\n",
|
|
"für die Länge $s_n$ **einer** Seite des eingeschriebenen regelmäßigen\n",
|
|
"$n$-Ecks.\n",
|
|
"\n",
|
|
"\n",
|
|
"Die Folge $(n\\cdot s_n)$\n",
|
|
"konvergiert monoton von unten gegen den\n",
|
|
"Grenzwert $2\\pi$:\n",
|
|
"$$\n",
|
|
" n\\, s_n \\rightarrow 2\\pi % \\qquad\\text{und} \\qquad {n c_n}\\downarrow 2\\pi\n",
|
|
"$$\n",
|
|
"Der relative Fehler der Approximation von 2π durch ein $n$-Eck ist:\n",
|
|
"$$\n",
|
|
" \\epsilon_n = \\left| \\frac{n\\, s_n-2 \\pi}{2\\pi} \\right|\n",
|
|
"$$\n",
|
|
"\n",
|
|
"\n",
|
|
"## Zwei Iterationsvorschriften^[nach: Christoph Überhuber, „Computer-Numerik“ Bd. 1, Springer 1995, Kap. 2.3]\n",
|
|
"Die Gleichung\n",
|
|
"$$\n",
|
|
" s_{2n} = \\sqrt{2-\\sqrt{4-s_n^2}}\\qquad \\qquad \\textrm{(Iteration A)}\n",
|
|
"$$\n",
|
|
"ist mathematisch äquivalent zu\n",
|
|
"$$\n",
|
|
" s_{2n} = \\frac{s_n}{\\sqrt{2+\\sqrt{4-s_n^2}}} \\qquad \\qquad \\textrm{(Iteration B)}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"(Bitte nachrechnen!) \n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"Allerdings ist Iteration A schlecht konditioniert und numerisch instabil, wie der folgende Code zeigt. Ausgegeben wird die jeweils berechnete Näherung für π.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f238690",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using Printf\n",
|
|
"\n",
|
|
"iterationA(s) = sqrt(2 - sqrt(4 - s^2))\n",
|
|
"iterationB(s) = s / sqrt(2 + sqrt(4 - s^2))\n",
|
|
"\n",
|
|
"s_B = s_A = sqrt(2) # Startwert \n",
|
|
"\n",
|
|
"ϵ(x) = abs(x - 2π)/2π # rel. Fehler \n",
|
|
"\n",
|
|
"ϵ_A = Float64[] # Vektoren für den Plot\n",
|
|
"ϵ_B = Float64[]\n",
|
|
"is = Float64[]\n",
|
|
"\n",
|
|
"@printf \"\"\" approx. Wert von π\n",
|
|
" n-Eck Iteration A Iteration B\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"for i in 3:35\n",
|
|
" push!(is, i)\n",
|
|
" s_A = iterationA(s_A) \n",
|
|
" s_B = iterationB(s_B) \n",
|
|
" doublePi_A = 2^i * s_A\n",
|
|
" doublePi_B = 2^i * s_B\n",
|
|
" push!(ϵ_A, ϵ(doublePi_A))\n",
|
|
" push!(ϵ_B, ϵ(doublePi_B))\n",
|
|
" @printf \"%14i %20.15f %20.15f\\n\" 2^i doublePi_A/2 doublePi_B/2 \n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0c0178f5",
|
|
"metadata": {},
|
|
"source": [
|
|
"Während Iteration B sich stabilisiert bei einem innerhalb der Maschinengenauigkeit korrekten Wert für π, wird Iteration A schnell instabil. Ein Plot der relativen Fehler $\\epsilon_i$ bestätigt das:\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f415aab0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"using PlotlyJS\n",
|
|
"\n",
|
|
"layout = Layout(xaxis_title=\"Iterationsschritte\", yaxis_title=\"rel. Fehler\",\n",
|
|
" yaxis_type=\"log\", yaxis_exponentformat=\"power\", \n",
|
|
" xaxis_tick0=2, xaxis_dtick=2)\n",
|
|
"\n",
|
|
"plot([scatter(x=is, y=ϵ_A, mode=\"markers+lines\", name=\"Iteration A\", yscale=:log10), \n",
|
|
" scatter(x=is, y=ϵ_B, mode=\"markers+lines\", name=\"Iteration B\", yscale=:log10)],\n",
|
|
" layout) \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "02116ab2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Stabilität und Auslöschung\n",
|
|
"\n",
|
|
"Bei $i=26$ erreicht Iteration B einen relativen Fehler in der Größe des Maschinenepsilons:\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3d50cba2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"ϵ_B[22:28]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5ba088ba",
|
|
"metadata": {},
|
|
"source": [
|
|
"Weitere Iterationen verbessern das Ergebnis nicht mehr. Sie stabilisieren sich bei einem relativen Fehler von etwa 2.5 Maschinenepsilon:\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2bcae61d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"ϵ_B[end]/eps(Float64)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0bfd8235",
|
|
"metadata": {},
|
|
"source": [
|
|
"Die Form Iteration A ist instabil. Bereits bei $i=16$ beginnt der relative Fehler wieder zu wachsen.\n",
|
|
"\n",
|
|
"Ursache ist eine typische Auslöschung. Die Seitenlängen $s_n$ werden sehr schnell klein. Damit ist\n",
|
|
"$a_n=\\sqrt{4-s_n^2}$ nur noch wenig kleiner als 2 und bei der Berechnung von $s_{2n}=\\sqrt{2-a_n}$ tritt ein typischer Auslöschungseffekt auf.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "365d4c27",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"setprecision(80) # precision für BigFloat\n",
|
|
"\n",
|
|
"s = sqrt(BigFloat(2))\n",
|
|
"\n",
|
|
"@printf \" a = √(4-s^2) als BigFloat und als Float64\\n\\n\"\n",
|
|
"\n",
|
|
"for i = 3:44\n",
|
|
" s = iterationA(s)\n",
|
|
" x = sqrt(4-s^2)\n",
|
|
" if i > 20\n",
|
|
" @printf \"%i %30.26f %20.16f \\n\" i x Float64(x)\n",
|
|
" end \n",
|
|
"end\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "04736a02",
|
|
"metadata": {},
|
|
"source": [
|
|
"Man sieht die Abnahme der Zahl der signifikanten Ziffern. Man sieht auch, dass eine Verwendung von `BigFloat` mit einer Mantissenlänge von hier 80 Bit das Einsetzen des Auslöschungseffekts nur etwas hinaussschieben kann. \n",
|
|
"\n",
|
|
"**Gegen instabile Algorithmen helfen in der Regel nur bessere, stabile Algorithmen und nicht genauere Maschinenzahlen!**\n",
|
|
"\n",
|
|
":::{.content-hidden unless-format=\"xxx\"}\n",
|
|
"\n",
|
|
"Offensichtlich tritt bei der Berechnung von $2-a_n$ bereits relativ früh\n",
|
|
"eine Abnahme der Anzahl der signifikanten Ziffern (Auslöschung) auf, \n",
|
|
"bevor schließlich bei der Berechnung von $a_n=\\sqrt{4-s_n^2}$ \n",
|
|
"selbst schon Auslöschung zu einem unbrauchbaren Ergebnis führt.\n",
|
|
"\n",
|
|
":::"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Julia 1.10.2",
|
|
"language": "julia",
|
|
"name": "julia-1.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|