master > master: code py - display verbessert
This commit is contained in:
parent
ea36c82728
commit
026cd6addf
@ -62,23 +62,31 @@ def rucksack_greedy_algorithm(
|
||||
vector[i] = (capacity - weight_total)/weights[i];
|
||||
break;
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
repr = display_greedy(vector=vector, values=values);
|
||||
print('');
|
||||
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
|
||||
print('');
|
||||
print(repr);
|
||||
print('');
|
||||
|
||||
# Lösung ausgeben
|
||||
return Solution(
|
||||
# Aspekte der Lösung speichern:
|
||||
soln = Solution(
|
||||
vector = vector,
|
||||
items = items[rucksack].tolist(),
|
||||
weights = weights[rucksack].tolist(),
|
||||
values = values[rucksack].tolist(),
|
||||
);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
expr_value = display_sum(vector=soln.vector, values=values);
|
||||
expr_weight = display_sum(vector=soln.vector, values=weights);
|
||||
print('');
|
||||
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
|
||||
print('');
|
||||
print(f'Rucksack: {", ".join(soln.items)}.');
|
||||
if fractional:
|
||||
print(f'Vector: {soln.vector_support}');
|
||||
print(f'max. Value ≈ {expr_value}');
|
||||
print(f'∑ Weights = {expr_weight}');
|
||||
print('');
|
||||
|
||||
# Lösung ausgeben
|
||||
return soln;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# METHOD branch and bound algorithm
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -122,23 +130,33 @@ def rucksack_branch_and_bound_algorithm(
|
||||
lb_estimate = lb;
|
||||
vector = A;
|
||||
|
||||
# Aspekte der Lösung speichern
|
||||
rucksack = vector.indexes_one; # Indexes von Items im Rucksack
|
||||
soln = Solution(
|
||||
vector = vector.decision,
|
||||
items = items[rucksack].tolist(),
|
||||
values = values[rucksack].tolist(),
|
||||
weights = weights[rucksack].tolist(),
|
||||
);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
expr_value = display_sum(vector=soln.vector, values=values);
|
||||
expr_weight = display_sum(vector=soln.vector, values=weights);
|
||||
repr = display_branch_and_bound(values=values, steps=logged_steps);
|
||||
print('');
|
||||
print('\x1b[1mRucksack Problem - Branch & Bound\x1b[0m');
|
||||
print('');
|
||||
print(repr);
|
||||
print('');
|
||||
print(f'Rucksack: {", ".join(soln.items)}.');
|
||||
print(f'max. Value ≈ {expr_value}');
|
||||
print(f'∑ Weights = {expr_weight}');
|
||||
print('');
|
||||
|
||||
|
||||
# Lösung ausgeben
|
||||
rucksack = vector.indexes_one; # Indexes von Items im Rucksack
|
||||
return Solution(
|
||||
vector = vector.decision,
|
||||
items = items[rucksack].tolist(),
|
||||
values = values[rucksack].tolist(),
|
||||
weights = weights[rucksack].tolist(),
|
||||
);
|
||||
return soln;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# AUXILIARY METHOD resort
|
||||
|
@ -15,7 +15,7 @@ from src.models.stacks import *;
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'display_greedy',
|
||||
'display_sum',
|
||||
'display_branch_and_bound',
|
||||
];
|
||||
|
||||
@ -23,7 +23,7 @@ __all__ = [
|
||||
# METHODS display
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def display_greedy(
|
||||
def display_sum(
|
||||
vector: Union[List[int], List[float]],
|
||||
values: np.ndarray,
|
||||
) -> str:
|
||||
@ -46,7 +46,7 @@ def display_branch_and_bound(
|
||||
rows.append((f'{lb_estimate:g}', f'{lb:g}', S));
|
||||
else:
|
||||
used_vectors.append(u)
|
||||
rows.append((f'{lb_estimate:g}', display_greedy(vector=u, values=values), S));
|
||||
rows.append((f'{lb_estimate:g}', display_sum(vector=u, values=values), S));
|
||||
|
||||
table = pd.DataFrame(rows) \
|
||||
.rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'S'}) \
|
||||
|
@ -34,6 +34,10 @@ class Solution(SolutionRaw):
|
||||
def support(self) -> List[float]:
|
||||
return [ i for i, v in enumerate(self.vector) if v > 0 ];
|
||||
|
||||
@property
|
||||
def vector_support(self) -> List[float]:
|
||||
return [ v for v in self.vector if v > 0 ];
|
||||
|
||||
@property
|
||||
def total_weight(self) -> float:
|
||||
return sum([ self.vector[i]*x for (i, x) in zip(self.support, self.weights) ]);
|
||||
|
Loading…
x
Reference in New Issue
Block a user