master > master: code py - models + config implementiert
This commit is contained in:
parent
67f6caf2d5
commit
0523c68100
6
code/python/.gitignore
vendored
6
code/python/.gitignore
vendored
@ -22,12 +22,16 @@
|
||||
!/src/**/*.py
|
||||
!/main.py
|
||||
|
||||
!/models
|
||||
!/models/*-schema.yaml
|
||||
!/models/README.md
|
||||
|
||||
!/tests
|
||||
!/tests/**/
|
||||
!/tests/**/*.py
|
||||
|
||||
!/assets
|
||||
!/assets/**/
|
||||
!/assets/*.yaml
|
||||
|
||||
!/dist
|
||||
!/dist/VERSION
|
||||
|
@ -12,7 +12,7 @@ die Methoden mit Daten ausprobieren.
|
||||
1. Der Python-Compiler **`^3.10.*`** wird benötigt.
|
||||
2. Es ist auch empfehlenswert, **`justfile`** zu installieren (siehe <https://github.com/casey/just#installation>).
|
||||
|
||||
## Setup -> Test -> Run ##
|
||||
## Build -> Test -> Run ##
|
||||
|
||||
In einem IDE in dem Repo zu diesem Ordner navigieren.
|
||||
</br>
|
||||
@ -23,7 +23,7 @@ Wer das **justfile**-Tool hat:
|
||||
# Zeige alle Befehle:
|
||||
just
|
||||
# Zur Installation der Requirements (nur nach Änderungen):
|
||||
just setup;
|
||||
just build;
|
||||
# Zur Ausführung der unit tests:
|
||||
just tests;
|
||||
# Zur Ausführung des Programms
|
||||
@ -43,3 +43,9 @@ python3 main.py
|
||||
Auf Windows verwendet man `py -3` od. `py -310` statt `python3`.
|
||||
|
||||
Man kann auch mit einem guten Editor/IDE die Tests einzeln ausführen.
|
||||
|
||||
## Testfälle durch Config-Datei ##
|
||||
|
||||
Statt den Code immer anfassen zu müssen, kann man Fälle für die verschiedenen Algorithmen
|
||||
in der **[./assets/commands](assets/commands.yaml)** erfassen und (mittels `just run`)
|
||||
das Programm ausführen.
|
||||
|
33
code/python/assets/commands.yaml
Normal file
33
code/python/assets/commands.yaml
Normal file
@ -0,0 +1,33 @@
|
||||
## Beispiel für Seminarwoche 9 (Blatt 8)
|
||||
- name: TSP
|
||||
dist:
|
||||
- [0, 7, 4, 3]
|
||||
- [7, 0, 5, 6]
|
||||
- [2, 5, 0, 5]
|
||||
- [2, 7, 4, 0]
|
||||
optimise: MIN
|
||||
verbose: true
|
||||
## Beispiele für Seminarwoche 10 (Blatt 9)
|
||||
- &command_hirschberg
|
||||
name: HIRSCHBERG
|
||||
once: true
|
||||
verbose:
|
||||
- COSTS
|
||||
- MOVES
|
||||
# show:
|
||||
# # - ATOMS
|
||||
# - TREE
|
||||
word1: 'happily ever after'
|
||||
word2: 'apples'
|
||||
- <<: *command_hirschberg
|
||||
word1: 'ANSTRENGEN'
|
||||
word2: 'ANSPANNEN'
|
||||
- <<: *command_hirschberg
|
||||
word1: 'ACGAAG'
|
||||
word2: 'AGAT'
|
||||
- <<: *command_hirschberg
|
||||
word1: 'happily ever, lol'
|
||||
word2: 'apple'
|
||||
- <<: *command_hirschberg
|
||||
word1: 'happily'
|
||||
word2: 'applses'
|
8
code/python/assets/config.yaml
Normal file
8
code/python/assets/config.yaml
Normal file
@ -0,0 +1,8 @@
|
||||
info:
|
||||
author: Raj Dahya
|
||||
title: Algorithmen und Datenstrukturen 2
|
||||
description: |-
|
||||
Ein Code-Projekt, das Algorithmen und Datenstrukturen aus dem Kurs
|
||||
ADS2 an der Universität Leipzig (Sommersemester 2022)
|
||||
implementiert.
|
||||
options: {}
|
2
code/python/dist/VERSION
vendored
2
code/python/dist/VERSION
vendored
@ -1 +1 @@
|
||||
0.0.0
|
||||
0.1.0
|
||||
|
@ -11,6 +11,7 @@ _default:
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
PYTHON := if os_family() == "windows" { "py -3" } else { "python3" }
|
||||
GEN_MODELS := "datamodel-codegen"
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Macros
|
||||
@ -42,6 +43,19 @@ _docker-build-and-log service:
|
||||
_docker-build-and-interact service container:
|
||||
@docker compose up --build -d {{service}} && docker attach {{container}}
|
||||
|
||||
_generate-models path name:
|
||||
@{{GEN_MODELS}} \
|
||||
--input-file-type openapi \
|
||||
--encoding "UTF-8" \
|
||||
--disable-timestamp \
|
||||
--use-schema-description \
|
||||
--allow-population-by-field-name \
|
||||
--snake-case-field \
|
||||
--strict-nullable \
|
||||
--target-python-version 3.9 \
|
||||
--input {{path}}/{{name}}-schema.yaml \
|
||||
--output {{path}}/generated/{{name}}.py
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# TARGETS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -50,8 +64,16 @@ _docker-build-and-interact service container:
|
||||
# TARGETS: build
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
build:
|
||||
build: _build-requirements _build-skip-requirements
|
||||
_build-skip-requirements: build-models
|
||||
_build-requirements:
|
||||
@{{PYTHON}} -m pip install --disable-pip-version-check -r requirements.txt
|
||||
build-models: _check-system-requirements _build-models-nochecks
|
||||
_build-models-nochecks:
|
||||
@echo "Generate data models from schemata."
|
||||
@just _create-folder-if-not-exists "models/generated"
|
||||
@- just _generate-models "models" "config"
|
||||
@- just _generate-models "models" "commands"
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# TARGETS: run
|
||||
@ -145,3 +167,8 @@ _display-logs:
|
||||
check-system:
|
||||
@echo "Operating System detected: {{os_family()}}."
|
||||
@echo "Python command used: {{PYTHON}}."
|
||||
_check-system-requirements:
|
||||
@if ! ( {{GEN_MODELS}} --help >> /dev/null 2> /dev/null ); then \
|
||||
echo "Command '{{GEN_MODELS}}' did not work. Ensure that the installation of 'datamodel-code-generator' worked and that system paths are set." \
|
||||
exit 1; \
|
||||
fi
|
||||
|
@ -6,18 +6,23 @@
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
import os;
|
||||
import sys;
|
||||
import sys
|
||||
from token import MINUS;
|
||||
|
||||
os.chdir(os.path.join(os.path.dirname(__file__), '..'));
|
||||
os.chdir(os.path.join(os.path.dirname(__file__)));
|
||||
sys.path.insert(0, os.getcwd());
|
||||
|
||||
from src.core.log import *;
|
||||
from src.thirdparty.maths import *;
|
||||
|
||||
from models.generated.commands import *;
|
||||
from src.core.log import *;
|
||||
from src.setup.config import *;
|
||||
from src.graphs.graph import *;
|
||||
from src.graphs.tarjan import *;
|
||||
from src.travel.naive import *;
|
||||
from src.tsp import *;
|
||||
from src.hirschberg import *;
|
||||
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# GLOBAL CONSTANTS/VARIABLES
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -29,38 +34,21 @@ from src.hirschberg import *;
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def enter():
|
||||
# ## Beispiel für Seminarwoche 9 (Blatt 8):
|
||||
# tsp_naive_algorithm(
|
||||
# dist = np.asarray([
|
||||
# [0, 7, 4, 3],
|
||||
# [7, 0, 5, 6],
|
||||
# [2, 5, 0, 5],
|
||||
# [2, 7, 4, 0],
|
||||
# ], dtype=float),
|
||||
# optimise=min,
|
||||
# verbose=True,
|
||||
# );
|
||||
## Beispiel für Seminarwoche 10 (Blatt 9):
|
||||
hirschberg_algorithm(
|
||||
# Y = 'ANSPANNEN',
|
||||
# X = 'ANSTRENGEN',
|
||||
# Y = 'AGAT',
|
||||
# X = 'ACGAAG',
|
||||
Y = 'apples',
|
||||
X = 'happily ever after',
|
||||
# Y = 'applses',
|
||||
# X = 'happily ever, lol',
|
||||
# Y = 'apple',
|
||||
# X = 'happily',
|
||||
# once = True,
|
||||
# verb = VerboseMode.COSTS,
|
||||
# verb = VerboseMode.MOVES,
|
||||
verb = VerboseMode.COSTS_AND_MOVES,
|
||||
show = [
|
||||
# DisplayOptions.ATOMS,
|
||||
DisplayOptions.TREE,
|
||||
],
|
||||
);
|
||||
for command in COMMANDS:
|
||||
if isinstance(command, CommandTsp):
|
||||
tsp_algorithm(
|
||||
dist = np.asarray(command.dist, dtype=float),
|
||||
optimise = min if command.optimise == EnumTspOptimise.min else max,
|
||||
verbose = command.verbose,
|
||||
);
|
||||
elif isinstance(command, CommandHirschberg):
|
||||
hirschberg_algorithm(
|
||||
X = command.word1,
|
||||
Y = command.word2,
|
||||
once = command.once,
|
||||
verb = command.verbose,
|
||||
show = command.show,
|
||||
);
|
||||
return;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
51
code/python/models/README.md
Normal file
51
code/python/models/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
# Models #
|
||||
|
||||
- In this folder the configuration files for the models of data classes (as `*.yaml`-files) are stored.
|
||||
- These are interpreted by `openapi` to generate the classes for the source code during the `build` phase of the programme.
|
||||
- Once the models are generated, the app configurations are read at run time and interpreted as these models.
|
||||
- Generating instead of manually encoding the classes is safer/more stable as it allows for validation.
|
||||
|
||||
## Folder structure ##
|
||||
|
||||
As per the 3rd point, the `yaml`-file/s for the models (schemata)
|
||||
and the `yaml`-file/s for actual configuration values for the app
|
||||
are to be kept separately.
|
||||
|
||||
All models are to be stored in [./models](../models/),
|
||||
whereas configuration files are to be stored in [./assets](../assets/).
|
||||
|
||||
Note that the generated python files are not stored in the repository.
|
||||
When deployed on a server, these are generated as part of the `build`-process.
|
||||
|
||||
## Developer notes ##
|
||||
|
||||
### Prerequisites ###
|
||||
|
||||
For the python source code, we currently use:
|
||||
|
||||
- Python: `v3.10.*`
|
||||
- Modules:
|
||||
- `datamodel-code-generator==0.12.0`
|
||||
|
||||
(This is all taken care of during the `build` process.)
|
||||
|
||||
### Building the models ###
|
||||
|
||||
To build the models before run time, use the following command + options:
|
||||
```bash
|
||||
datamodel-codegen
|
||||
--input-file-type openapi
|
||||
--encoding "UTF-8"
|
||||
--disable-timestamp
|
||||
--use-schema-description
|
||||
--snake-case-field
|
||||
--strict-nullable
|
||||
--input <path/to/file.yml>
|
||||
--output <path/to/file.py>
|
||||
```
|
||||
(cf. https://pydantic-docs.helpmanual.io/datamodel_code_generator/).
|
||||
|
||||
Alternatively, call:
|
||||
```
|
||||
just build
|
||||
```
|
140
code/python/models/commands-schema.yaml
Normal file
140
code/python/models/commands-schema.yaml
Normal file
@ -0,0 +1,140 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
version: 0.1.0
|
||||
title: Schemata for command instructions
|
||||
servers: []
|
||||
paths: {}
|
||||
components:
|
||||
schemas:
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Commands
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Commands:
|
||||
description: |-
|
||||
List of commands to test algorithms/datastructures.
|
||||
type: array
|
||||
items:
|
||||
$ref: "#/components/schemas/Command"
|
||||
default: []
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Command
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Command:
|
||||
description: |-
|
||||
Instructions for command to call
|
||||
required:
|
||||
- name
|
||||
properties: &ref_command_properties
|
||||
name:
|
||||
$ref: '#/components/schemas/EnumAlgorithmNames'
|
||||
additionalProperties: true
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Command - Algorithm: Tarjan
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
CommandTarjan:
|
||||
description: |-
|
||||
Instructions for execution of Tarjan-Algorithm
|
||||
type: object
|
||||
required:
|
||||
- name
|
||||
properties:
|
||||
<<: *ref_command_properties
|
||||
# required:
|
||||
# properties:
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Command - Algorithm: TSP
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
CommandTsp:
|
||||
description: |-
|
||||
Instructions for execution of TSP-Algorithm
|
||||
type: object
|
||||
required:
|
||||
- name
|
||||
- optimise
|
||||
- dist
|
||||
properties:
|
||||
<<: *ref_command_properties
|
||||
dist:
|
||||
type: array
|
||||
items:
|
||||
type: array
|
||||
items:
|
||||
type: number
|
||||
optimise:
|
||||
$ref: '#/components/schemas/EnumTSPOptimise'
|
||||
verbose:
|
||||
type: boolean
|
||||
default: false
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Command - Algorithm: Hirschberg
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
CommandHirschberg:
|
||||
description: |-
|
||||
Instructions for execution of Hirschberg-Algorithm
|
||||
type: object
|
||||
required:
|
||||
- name
|
||||
- horizontal
|
||||
- vertical
|
||||
properties:
|
||||
<<: *ref_command_properties
|
||||
word1:
|
||||
description: Word that gets placed vertically in algorithm.
|
||||
type: string
|
||||
word2:
|
||||
description: Word that gets placed horizontally in algorithm
|
||||
type: string
|
||||
once:
|
||||
type: boolean
|
||||
default: false
|
||||
verbose:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/EnumHirschbergVerbosity'
|
||||
default: []
|
||||
show:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/EnumHirschbergShow'
|
||||
default: []
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum Algorithm Names
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumAlgorithmNames:
|
||||
description: |-
|
||||
Enumeration of possible algorithm options.
|
||||
type: string
|
||||
enum:
|
||||
- TARJAN
|
||||
- TSP
|
||||
- HIRSCHBERG
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum TSP - Optimise Mode
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumTSPOptimise:
|
||||
description: |-
|
||||
Enumeration of optimisation options for TSP
|
||||
type: string
|
||||
enum:
|
||||
- MIN
|
||||
- MAX
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum Hirschberg - Verbosity options
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumHirschbergVerbosity:
|
||||
description: |-
|
||||
Enumeration of verbosity options for Hirschberg
|
||||
type: string
|
||||
enum:
|
||||
- COSTS
|
||||
- MOVES
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Enum Hirschberg - display options
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
EnumHirschbergShow:
|
||||
description: |-
|
||||
Enumeration of verbosity options for Hirschberg
|
||||
type: string
|
||||
enum:
|
||||
- TREE
|
||||
- ATOMS
|
49
code/python/models/config-schema.yaml
Normal file
49
code/python/models/config-schema.yaml
Normal file
@ -0,0 +1,49 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
version: 0.1.0
|
||||
title: Schemata for config models
|
||||
servers: []
|
||||
paths: {}
|
||||
components:
|
||||
schemas:
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Config
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Config:
|
||||
descripton: |-
|
||||
Data model for all parts of the configuration.
|
||||
type: object
|
||||
required:
|
||||
- info
|
||||
- options
|
||||
- calls
|
||||
properties:
|
||||
info:
|
||||
$ref: "#/components/schemas/Info"
|
||||
options:
|
||||
$ref: "#/components/schemas/AppOptions"
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Info
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Info:
|
||||
description: |-
|
||||
Contains meta data about project.
|
||||
type: object
|
||||
required:
|
||||
- title
|
||||
- description
|
||||
- author
|
||||
properties:
|
||||
title:
|
||||
type: string
|
||||
description:
|
||||
type: string
|
||||
author:
|
||||
type: string
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# App Options
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
AppOptions:
|
||||
description: |-
|
||||
Options pertaining to the rudimentary setup of the app.
|
||||
type: object
|
@ -1,7 +1,35 @@
|
||||
pip>=22.0.4
|
||||
pip>=22.1.2
|
||||
wheel>=0.37.1
|
||||
|
||||
# running
|
||||
anyio>=3.5.0
|
||||
aiohttp>=3.8.1
|
||||
asyncio>=3.4.3
|
||||
codetiming>=1.3.0
|
||||
|
||||
# testing + dev
|
||||
coverage[toml]>=6.4
|
||||
pytest>=7.1.1
|
||||
pytest-asyncio>=0.18.3
|
||||
pytest-cov>=3.0.0
|
||||
pytest-lazy-fixture>=0.6.3
|
||||
pytest-order>=1.0.1
|
||||
testfixtures>=6.18.5
|
||||
|
||||
# config
|
||||
python-dotenv>=0.2.0
|
||||
jsonschema>=4.4.0
|
||||
lazy-load>=0.8.2
|
||||
pyyaml>=6.0
|
||||
pydantic>=1.9.0
|
||||
datamodel-code-generator>=0.12.0
|
||||
|
||||
# misc
|
||||
lorem>=0.1.1
|
||||
safetywrap>=1.5.0
|
||||
typing>=3.7.4.3
|
||||
|
||||
# maths
|
||||
numpy>=1.22.3
|
||||
pandas>=1.4.1
|
||||
tabulate>=0.8.9
|
||||
|
@ -15,6 +15,4 @@ from src.hirschberg.display import *;
|
||||
|
||||
__all__ = [
|
||||
'hirschberg_algorithm',
|
||||
'VerboseMode',
|
||||
'DisplayOptions',
|
||||
];
|
||||
|
@ -8,6 +8,7 @@
|
||||
from src.thirdparty.types import *;
|
||||
from src.thirdparty.maths import *;
|
||||
|
||||
from models.generated.commands import *;
|
||||
from src.hirschberg.constants import *;
|
||||
from src.hirschberg.display import *;
|
||||
from src.hirschberg.matrix import *;
|
||||
@ -30,8 +31,8 @@ __all__ = [
|
||||
def simple_algorithm(
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: VerboseMode = VerboseMode.NONE,
|
||||
show: List[DisplayOptions] = [],
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Tuple[str, str]:
|
||||
'''
|
||||
Dieser Algorithmus berechnet die Edit-Distanzen + optimale Richtungen ein Mal.
|
||||
@ -40,7 +41,7 @@ def simple_algorithm(
|
||||
Costs, Moves = compute_cost_matrix(X = '-' + X, Y = '-' + Y);
|
||||
path = reconstruct_optimal_path(Moves=Moves);
|
||||
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
|
||||
if verb != VerboseMode.NONE:
|
||||
if verb != []:
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
|
||||
display = word_y + f'\n{"-"*len(word_x)}\n' + word_x;
|
||||
print(f'\n{repr}\n\n\x1b[1mOptimales Alignment:\x1b[0m\n\n{display}\n');
|
||||
@ -50,8 +51,8 @@ def hirschberg_algorithm(
|
||||
X: str,
|
||||
Y: str,
|
||||
once: bool = False,
|
||||
verb: VerboseMode = VerboseMode.NONE,
|
||||
show: List[DisplayOptions] = [],
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Tuple[str, str]:
|
||||
'''
|
||||
Der Hirschberg-Algorithmus berechnet nur die Edit-Distanzen (Kostenmatrix)
|
||||
@ -72,8 +73,8 @@ def hirschberg_algorithm(
|
||||
word_y = align.as_string2();
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != VerboseMode.NONE:
|
||||
if DisplayOptions.TREE in show:
|
||||
if verb != []:
|
||||
if EnumHirschbergShow.tree in show:
|
||||
display = align.astree(braces=True);
|
||||
else:
|
||||
display_x = align.as_string1(braces=True);
|
||||
@ -87,8 +88,8 @@ def hirschberg_algorithm_step(
|
||||
X: str,
|
||||
Y: str,
|
||||
depth: int = 0,
|
||||
verb: VerboseMode = VerboseMode.NONE,
|
||||
show: List[DisplayOptions] = [],
|
||||
verb: List[EnumHirschbergVerbosity] = [],
|
||||
show: List[EnumHirschbergShow] = [],
|
||||
) -> Alignment:
|
||||
'''
|
||||
Der rekursive Schritt der Hirschberg-Algorithmus teil eines der Wörter in zwei
|
||||
@ -105,7 +106,7 @@ def hirschberg_algorithm_step(
|
||||
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != VerboseMode.NONE and (DisplayOptions.ATOMS in show):
|
||||
if verb != [] and (EnumHirschbergShow.atoms in show):
|
||||
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
|
||||
print(f'\n\x1b[1mRekursionstiefe: {depth}\x1b[0m\n\n{repr}')
|
||||
|
||||
@ -126,7 +127,7 @@ def hirschberg_algorithm_step(
|
||||
Costs2, Moves2 = compute_cost_matrix(X = '-' + X2, Y = '-' + Y2);
|
||||
|
||||
# verbose output hier behandeln (irrelevant für Algorithmus):
|
||||
if verb != VerboseMode.NONE:
|
||||
if verb != []:
|
||||
path1, path2 = reconstruct_optimal_path_halves(Costs1=Costs1, Costs2=Costs2, Moves1=Moves1, Moves2=Moves2);
|
||||
repr = display_cost_matrix_halves(
|
||||
Costs1 = Costs1,
|
||||
|
@ -12,8 +12,6 @@ from src.thirdparty.types import *;
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'VerboseMode',
|
||||
'DisplayOptions',
|
||||
'Directions',
|
||||
'gap_penalty',
|
||||
'missmatch_penalty',
|
||||
@ -23,16 +21,6 @@ __all__ = [
|
||||
# ENUMS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
class VerboseMode(Enum):
|
||||
NONE = -1;
|
||||
COSTS = 0;
|
||||
MOVES = 1;
|
||||
COSTS_AND_MOVES = 2;
|
||||
|
||||
class DisplayOptions(Enum):
|
||||
TREE = 0;
|
||||
ATOMS = 1;
|
||||
|
||||
class Directions(Enum):
|
||||
UNSET = -1;
|
||||
# Prioritäten hier setzen
|
||||
|
@ -8,6 +8,7 @@
|
||||
from src.thirdparty.types import *;
|
||||
from src.thirdparty.maths import *;
|
||||
|
||||
from models.generated.commands import *;
|
||||
from src.hirschberg.constants import *;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -29,7 +30,7 @@ def represent_cost_matrix(
|
||||
path: List[Tuple[int, int]],
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: VerboseMode,
|
||||
verb: List[EnumHirschbergVerbosity],
|
||||
pad: bool = False,
|
||||
) -> np.ndarray: # NDArray[(Any, Any), Any]:
|
||||
m = len(X); # display vertically
|
||||
@ -42,28 +43,27 @@ def represent_cost_matrix(
|
||||
table = np.full(shape=(3 + m, 3 + n), dtype=object, fill_value='');
|
||||
|
||||
# topmost rows:
|
||||
table[0, 3:(3+n)] = [str(j) for j in range(n)];
|
||||
table[1, 3:(3+n)] = [y for y in Y];
|
||||
table[0, 3:(3+n)] = [ f'\x1b[2m{j}\x1b[0m' for j in range(n) ];
|
||||
table[1, 3:(3+n)] = [ f'\x1b[1m{y}\x1b[0m' for y in Y ];
|
||||
table[2, 3:(3+n)] = '--';
|
||||
# leftmost columns:
|
||||
table[3:(3+m), 0] = [str(i) for i in range(m)];
|
||||
table[3:(3+m), 1] = [x for x in X];
|
||||
table[3:(3+m), 0] = [ f'\x1b[2m{i}\x1b[0m' for i in range(m) ];
|
||||
table[3:(3+m), 1] = [ f'\x1b[1m{x}\x1b[0m' for x in X ];
|
||||
table[3:(3+m), 2] = '|';
|
||||
|
||||
if pad:
|
||||
table[-3, 3:(3+n)] = '--';
|
||||
table[3:(3+m), -1] = '|';
|
||||
|
||||
match verb:
|
||||
case VerboseMode.MOVES:
|
||||
table[3:(3+m), 3:(3+n)] = '\x1b[2m.\x1b[0m';
|
||||
if EnumHirschbergVerbosity.costs in verb:
|
||||
table[3:(3+m), 3:(3+n)] = Costs.copy();
|
||||
if EnumHirschbergVerbosity.moves in verb:
|
||||
for (i, j) in path:
|
||||
table[3 + i, 3 + j] = '\x1b[31;1m*\x1b[0m';
|
||||
case VerboseMode.COSTS | VerboseMode.COSTS_AND_MOVES:
|
||||
table[3:(3+m), 3:(3+n)] = Costs.copy();
|
||||
if verb == VerboseMode.COSTS_AND_MOVES:
|
||||
for (i, j) in path:
|
||||
table[3 + i, 3 + j] = f'\x1b[31;4;1m{table[3 + i, 3 + j]}\x1b[0m';
|
||||
table[3 + i, 3 + j] = f'\x1b[31;4;1m{table[3 + i, 3 + j]}\x1b[0m';
|
||||
elif EnumHirschbergVerbosity.moves in verb:
|
||||
table[3:(3+m), 3:(3+n)] = '\x1b[2m.\x1b[0m';
|
||||
for (i, j) in path:
|
||||
table[3 + i, 3 + j] = '\x1b[31;1m*\x1b[0m';
|
||||
|
||||
return table;
|
||||
|
||||
@ -72,7 +72,7 @@ def display_cost_matrix(
|
||||
path: List[Tuple[int, int]],
|
||||
X: str,
|
||||
Y: str,
|
||||
verb: VerboseMode,
|
||||
verb: EnumHirschbergVerbosity,
|
||||
) -> str:
|
||||
'''
|
||||
Zeigt Kostenmatrix + optimalen Pfad.
|
||||
@ -99,7 +99,7 @@ def display_cost_matrix_halves(
|
||||
X2: str,
|
||||
Y1: str,
|
||||
Y2: str,
|
||||
verb: VerboseMode,
|
||||
verb: EnumHirschbergVerbosity,
|
||||
) -> str:
|
||||
'''
|
||||
Zeigt Kostenmatrix + optimalen Pfad für Schritt im D & C Hirschberg-Algorithmus
|
||||
|
61
code/python/src/setup/config.py
Normal file
61
code/python/src/setup/config.py
Normal file
@ -0,0 +1,61 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# IMPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
from src.thirdparty.misc import *;
|
||||
from src.thirdparty.config import *;
|
||||
from src.thirdparty.code import *;
|
||||
from src.thirdparty.types import *;
|
||||
|
||||
from models.generated.config import *;
|
||||
from models.generated.commands import *;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# EXPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'INFO',
|
||||
'OPTIONS',
|
||||
'COMMANDS',
|
||||
];
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# CONSTANTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
PATH_ASSETS_CONFIG: str = 'assets/config.yaml';
|
||||
PATH_ASSETS_COMMANDS: str = 'assets/commands.yaml';
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# LAZY LOADED RESOURCES
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def load_assets_config(path: str) -> Config: # pragma: no cover
|
||||
with open(path, 'r') as fp:
|
||||
assets = yaml_load(fp, Loader=yaml_FullLoader);
|
||||
assert isinstance(assets, dict);
|
||||
return Config(**assets);
|
||||
|
||||
def create_commands(path: str) -> List[Command]: # pragma: no cover
|
||||
commands = [];
|
||||
with open(path, 'r') as fp:
|
||||
assets = yaml_load(fp, Loader=yaml_FullLoader);
|
||||
for command in assets:
|
||||
match Command(**command).name:
|
||||
case EnumAlgorithmNames.tarjan:
|
||||
commands.append(CommandTarjan(**command));
|
||||
case EnumAlgorithmNames.tsp:
|
||||
commands.append(CommandTsp(**command));
|
||||
case EnumAlgorithmNames.hirschberg:
|
||||
commands.append(CommandHirschberg(**command));
|
||||
return commands;
|
||||
|
||||
# use lazy loaing to ensure that values only loaded (once) when used
|
||||
CONFIG: Config = lazy(load_assets_config, path=PATH_ASSETS_CONFIG);
|
||||
INFO: Info = lazy(lambda x: x.info, CONFIG);
|
||||
OPTIONS: AppOptions = lazy(lambda x: x.options, CONFIG);
|
||||
COMMANDS: List[Command] = lazy(create_commands, path=PATH_ASSETS_COMMANDS);
|
43
code/python/src/thirdparty/code.py
vendored
Normal file
43
code/python/src/thirdparty/code.py
vendored
Normal file
@ -0,0 +1,43 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# IMPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
from functools import wraps;
|
||||
from functools import partial;
|
||||
from dataclasses import dataclass;
|
||||
from dataclasses import field;
|
||||
from dataclasses import Field;
|
||||
from dataclasses import asdict;
|
||||
from dataclasses import MISSING;
|
||||
from itertools import product as itertools_product;
|
||||
# cf. https://github.com/mplanchard/safetywrap
|
||||
from safetywrap import Ok;
|
||||
from safetywrap import Err;
|
||||
from safetywrap import Nothing;
|
||||
from safetywrap import Result;
|
||||
from safetywrap import Option;
|
||||
from safetywrap import Some;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# EXPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'partial',
|
||||
'wraps',
|
||||
'asdict',
|
||||
'dataclass',
|
||||
'field',
|
||||
'Field',
|
||||
'MISSING',
|
||||
'itertools_product',
|
||||
'Err',
|
||||
'Nothing',
|
||||
'Ok',
|
||||
'Option',
|
||||
'Result',
|
||||
'Some',
|
||||
];
|
16
code/python/src/thirdparty/config.py
vendored
16
code/python/src/thirdparty/config.py
vendored
@ -6,10 +6,12 @@
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
import json;
|
||||
import jsonschema;
|
||||
from lazy_load import lazy;
|
||||
from yaml import add_constructor;
|
||||
from yaml import load;
|
||||
from yaml import Loader;
|
||||
from yaml import FullLoader;
|
||||
from yaml import load as yaml_load;
|
||||
from yaml import FullLoader as yaml_FullLoader;
|
||||
from yaml import add_path_resolver as yaml_add_path_resolver;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# EXPORTS
|
||||
@ -17,8 +19,10 @@ from yaml import FullLoader;
|
||||
|
||||
__all__ = [
|
||||
'json',
|
||||
'jsonschema',
|
||||
'lazy',
|
||||
'add_constructor',
|
||||
'load',
|
||||
'Loader',
|
||||
'FullLoader',
|
||||
'yaml_load',
|
||||
'yaml_FullLoader',
|
||||
'yaml_add_path_resolver',
|
||||
];
|
||||
|
16
code/python/src/tsp/__init__.py
Normal file
16
code/python/src/tsp/__init__.py
Normal file
@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# IMPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
from src.tsp.algorithms import *;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# EXPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'tsp_algorithm',
|
||||
];
|
@ -5,7 +5,6 @@
|
||||
# IMPORTS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
from __future__ import annotations;
|
||||
from src.thirdparty.types import *;
|
||||
from src.thirdparty.maths import *;
|
||||
|
||||
@ -14,15 +13,15 @@ from src.thirdparty.maths import *;
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
__all__ = [
|
||||
'tsp_naive_algorithm',
|
||||
'tsp_algorithm',
|
||||
];
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# METHOD tsp_naive_algorithm
|
||||
# METHOD tsp_algorithm
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def tsp_naive_algorithm(
|
||||
dist: NDArray[(Any, Any), float],
|
||||
def tsp_algorithm(
|
||||
dist: np.ndarray, # NDArray[(Any, Any), float],
|
||||
optimise = min,
|
||||
verbose: bool = False,
|
||||
) -> tuple[float, list[list[int]]]:
|
Loading…
x
Reference in New Issue
Block a user