master > master: code py - fractional Werte + Sortierung in Greedy-Summen

This commit is contained in:
RD 2022-06-14 20:02:22 +02:00
parent c6149c230a
commit 3791220cee
4 changed files with 61 additions and 65 deletions

View File

@ -57,15 +57,15 @@ def rucksack_greedy_algorithm(
# führe greedy aus: # führe greedy aus:
n = len(costs); n = len(costs);
cost_total = 0; cost_total = 0;
vector = [ 0 for _ in range(n) ]; vector = [ Fraction(0) for _ in range(n) ];
for i in order: for i in order:
# füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke # füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke
if cost_total + costs[i] <= max_cost: if cost_total + costs[i] <= max_cost:
cost_total += costs[i]; cost_total += costs[i];
vector[i] = 1; vector[i] = Fraction(1);
# falls Bruchteile erlaubt sind, füge einen Bruchteil des i. Items hinzu und abbrechen # falls Bruchteile erlaubt sind, füge einen Bruchteil des i. Items hinzu und abbrechen
elif fractional: elif fractional:
vector[i] = (max_cost - cost_total)/costs[i]; vector[i] = Fraction(Fraction(max_cost - cost_total)/Fraction(costs[i]), _normalize=False);
break; break;
# ansonsten weiter machen: # ansonsten weiter machen:
else: else:
@ -74,7 +74,8 @@ def rucksack_greedy_algorithm(
# Aspekte der Lösung speichern: # Aspekte der Lösung speichern:
rucksack = [i for i, v in enumerate(vector) if v > 0]; # Indexes von Items im Rucksack rucksack = [i for i, v in enumerate(vector) if v > 0]; # Indexes von Items im Rucksack
soln = Solution( soln = Solution(
vector = vector, order = order,
choice = vector,
items = items[rucksack].tolist(), items = items[rucksack].tolist(),
costs = costs[rucksack].tolist(), costs = costs[rucksack].tolist(),
values = values[rucksack].tolist(), values = values[rucksack].tolist(),
@ -85,7 +86,7 @@ def rucksack_greedy_algorithm(
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]); repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]);
print('\x1b[1mEingeschätzte Lösung\x1b[0m'); print('\x1b[1mEingeschätzte Lösung\x1b[0m');
print(''); print('');
print(f'Mask: {soln.vector}'); print(f'Mask: [{", ".join(map(str, soln.choice))}]');
print('Rucksack:') print('Rucksack:')
print(repr_rucksack); print(repr_rucksack);
print(''); print('');
@ -126,21 +127,19 @@ def rucksack_branch_and_bound_algorithm(
S = Stack(); S = Stack();
S.push(vector); S.push(vector);
while not S.empty(): while not S.empty():
lb, u, can_add_all, can_add_none = estimate_lower_bound(mask=S.top(), max_cost=max_cost, costs=costs, values=values, items=items); lb, choice, order_, pad = estimate_lower_bound(mask=S.top(), max_cost=max_cost, costs=costs, values=values, items=items);
if verbose: if verbose:
logged_steps.append((lb_estimate, lb, str(S), u, can_add_all, can_add_none)); logged_steps.append((lb_estimate, lb, str(S), choice, order_, pad));
# Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert: # Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert:
A: Mask = S.pop(); A: Mask = S.pop();
if lb < lb_estimate: if lb < lb_estimate:
# Bound, wenn sich A nicht weiter aufteilen lässt od. man A wie eine einelementige Option behandeln kann: # Bound, wenn sich A nicht weiter aufteilen lässt od. man A wie eine einelementige Option behandeln kann:
if not A.splittable() or can_add_all or can_add_none: if not A.splittable() or pad != MaskValue.UNSET:
lb_estimate = lb; lb_estimate = lb;
if can_add_all: # falls A als einelementige Menge betrachtet werden kann, ersetze unbekannte Werte:
vector = A.pad_ones(); if pad != MaskValue.UNSET:
elif can_add_none: A = A.pad(pad);
vector = A.pad_zeros(); vector = A;
else:
vector = A;
# Branch sonst # Branch sonst
else: else:
B, C = A.split(); B, C = A.split();
@ -152,7 +151,8 @@ def rucksack_branch_and_bound_algorithm(
# Aspekte der Lösung speichern # Aspekte der Lösung speichern
rucksack = vector.indexes_one; # Indexes von Items im Rucksack rucksack = vector.indexes_one; # Indexes von Items im Rucksack
soln = Solution( soln = Solution(
vector = vector.decision, order = order,
choice = vector.choice,
items = items[rucksack].tolist(), items = items[rucksack].tolist(),
values = values[rucksack].tolist(), values = values[rucksack].tolist(),
costs = costs[rucksack].tolist(), costs = costs[rucksack].tolist(),
@ -160,13 +160,13 @@ def rucksack_branch_and_bound_algorithm(
# verbose output hier behandeln (irrelevant für Algorithmus): # verbose output hier behandeln (irrelevant für Algorithmus):
if verbose: if verbose:
repr = display_branch_and_bound(values=values, steps=logged_steps, order=order); repr = display_branch_and_bound(values=values, steps=logged_steps);
repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]); repr_rucksack = display_rucksack(items=items[rucksack], costs=costs[rucksack], values=values[rucksack]);
print('\x1b[1mLösung\x1b[0m'); print('\x1b[1mLösung\x1b[0m');
print(''); print('');
print(repr); print(repr);
print(''); print('');
print(f'Mask: {soln.vector}'); print(f'Mask: [{", ".join(map(str, soln.choice))}]');
print('Rucksack:'); print('Rucksack:');
print(repr_rucksack); print(repr_rucksack);
print(''); print('');
@ -184,7 +184,8 @@ def get_sort_order(costs: np.ndarray, values: np.ndarray) -> List[int]:
''' '''
n = len(costs); n = len(costs);
indexes = list(range(n)); indexes = list(range(n));
order = sorted(indexes, key=lambda i: -values[i]/costs[i]); margin = [ value/cost for cost, value in zip(costs, values) ];
order = sorted(indexes, key=lambda i: -margin[i]);
return order; return order;
def estimate_lower_bound( def estimate_lower_bound(
@ -193,7 +194,7 @@ def estimate_lower_bound(
costs: np.ndarray, costs: np.ndarray,
values: np.ndarray, values: np.ndarray,
items: np.ndarray, items: np.ndarray,
) -> Tuple[float, List[float], bool]: ) -> Tuple[float, List[Fraction], List[int], MaskValue]:
''' '''
Wenn partielle Information über den Rucksack festgelegt ist, Wenn partielle Information über den Rucksack festgelegt ist,
kann man bei dem unbekannten Teil das Rucksack-Problem kann man bei dem unbekannten Teil das Rucksack-Problem
@ -205,25 +206,25 @@ def estimate_lower_bound(
indexes_one = mask.indexes_one; indexes_one = mask.indexes_one;
indexes_unset = mask.indexes_unset; indexes_unset = mask.indexes_unset;
n = len(mask); n = len(mask);
vector = np.zeros(shape=(n,), dtype=float); choice = np.zeros(shape=(n,), dtype=Fraction);
order = np.asarray(range(n));
# Berechnungen bei Items mit bekanntem Status in Rucksack: # Berechnungen bei Items mit bekanntem Status in Rucksack:
value_rucksack = sum(values[indexes_one]); value_rucksack = sum(values[indexes_one]);
cost_rucksack = sum(costs[indexes_one]); cost_rucksack = sum(costs[indexes_one]);
vector[indexes_one] = 1; choice[indexes_one] = Fraction(1);
# Für Rest des Rucksacks (Items mit unbekanntem Status): # Für Rest des Rucksacks (Items mit unbekanntem Status):
cost_rest = max_cost - cost_rucksack; cost_rest = max_cost - cost_rucksack;
can_add_all = False; pad = MaskValue.UNSET;
can_add_none = False;
# Prüfe, ob man als Lösung alles/nichts hinzufügen kann: # Prüfe, ob man als Lösung alles/nichts hinzufügen kann:
if len(indexes_unset) > 0 and sum(costs[indexes_unset]) <= cost_rest: if len(indexes_unset) > 0 and sum(costs[indexes_unset]) <= cost_rest:
can_add_all = True; pad = MaskValue.ONE;
vector[indexes_unset] = 1; choice[indexes_unset] = Fraction(1);
value_rest = sum(values[indexes_unset]); value_rest = sum(values[indexes_unset]);
elif len(indexes_unset) > 0 and min(costs[indexes_unset]) > cost_rest: elif len(indexes_unset) > 0 and min(costs[indexes_unset]) > cost_rest:
can_add_none = True; pad = MaskValue.ZERO;
vector[indexes_unset] = 0; choice[indexes_unset] = Fraction(0);
value_rest = 0; value_rest = 0;
# Sonst mit Greedy-Algorithmus lösen: # Sonst mit Greedy-Algorithmus lösen:
# NOTE: Lösung ist eine Überschätzung des max-Wertes. # NOTE: Lösung ist eine Überschätzung des max-Wertes.
@ -236,11 +237,13 @@ def estimate_lower_bound(
fractional = True, fractional = True,
verbose = False, verbose = False,
); );
choice[indexes_unset] = soln_rest.choice;
value_rest = soln_rest.total_value; value_rest = soln_rest.total_value;
vector[indexes_unset] = soln_rest.vector; # Berechne Permutation für Teilrucksack
permute_part(order, indexes=indexes_unset, order=soln_rest.order, in_place=True);
# Einschätzung des max-Wertes: # Einschätzung des max-Wertes:
value_max_est = value_rucksack + value_rest; value_max_est = value_rucksack + value_rest;
# Ausgabe mit -1 multiplizieren (weil maximiert wird): # Ausgabe mit -1 multiplizieren (weil maximiert wird):
return -value_max_est, vector.tolist(), can_add_all, can_add_none; return -value_max_est, choice.tolist(), order.tolist(), pad;

View File

@ -10,6 +10,7 @@ from src.thirdparty.maths import *;
from src.thirdparty.types import *; from src.thirdparty.types import *;
from src.models.stacks import *; from src.models.stacks import *;
from src.models.rucksack import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS # EXPORTS
@ -38,7 +39,7 @@ def display_order(
'order': order, 'order': order,
'values': values, 'values': values,
'costs': costs, 'costs': costs,
'u': (values/costs), 'margin': [str(Fraction(Fraction(value), Fraction(cost))) for cost, value in zip(costs, values)],
}) \ }) \
.reset_index(drop=True); .reset_index(drop=True);
if one_based: if one_based:
@ -62,10 +63,11 @@ def display_rucksack(
costs: np.ndarray, costs: np.ndarray,
values: np.ndarray, values: np.ndarray,
) -> str: ) -> str:
render = lambda r: f'{r:g}';
table = pd.DataFrame({ table = pd.DataFrame({
'items': items.tolist() + ['----', ''], 'items': items.tolist() + ['----', ''],
'costs': costs.tolist() + ['', f'\x1b[92;1m{sum(costs)}\x1b[0m'], 'costs': list(map(render, costs)) + ['', f'\x1b[92;1m{sum(costs):g}\x1b[0m'],
'values': values.tolist() + ['', f'\x1b[92;1m{sum(values)}\x1b[0m'], 'values': list(map(render, values)) + ['', f'\x1b[92;1m{sum(values):g}\x1b[0m'],
}); });
repr = tabulate( repr = tabulate(
table, table,
@ -82,20 +84,18 @@ def display_rucksack(
def display_branch_and_bound( def display_branch_and_bound(
values: np.ndarray, values: np.ndarray,
steps: List[Tuple[float, float, Stack, List[float], bool, bool]], steps: List[Tuple[float, float, Stack, List[Fraction], List[int], MaskValue]],
order: Optional[List[int]] = None,
) -> str: ) -> str:
# füge Summen-Ausdrücke für Greedy-Alg hinzu: # füge Summen-Ausdrücke für Greedy-Alg hinzu:
rows = []; rows = [];
used_vectors = []; used_choices = [];
for lb_estimate, lb, S, u, can_add_all, can_add_none in steps: for lb_estimate, lb, S, choice, order, pad in steps:
pad = '1' if can_add_all else ('0' if can_add_none else ''); if choice in used_choices:
if u in used_vectors:
expr = f'{lb:g}'; expr = f'{lb:g}';
else: else:
used_vectors.append(u) used_choices.append(choice);
expr = display_sum(vector=u, values=values, as_maximum=False, order=order); expr = display_sum(choice=choice, values=values, as_maximum=False, order=order);
rows.append((f'{lb_estimate:g}', expr, pad, S)); rows.append((f'{lb_estimate:g}', expr, ('' if pad == MaskValue.UNSET else pad.value), S));
table = pd.DataFrame(rows) \ table = pd.DataFrame(rows) \
.rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'pad?', 3: 'S'}) \ .rename(columns={0: 'b', 1: 'g(TOP(S))', 2: 'pad?', 3: 'S'}) \
@ -115,17 +115,17 @@ def display_branch_and_bound(
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_sum( def display_sum(
vector: List[float], choice: List[Fraction],
values: np.ndarray, values: np.ndarray,
order: Optional[List[int]] = None, order: Optional[List[int]] = None,
as_maximum: bool = True, as_maximum: bool = True,
) -> str: ) -> str:
parts = [ (u, x) for u, x in zip(vector, values)]; parts = [ (u, x) for u, x in zip(choice, values)];
if not (order is None): if not (order is None):
parts = [ parts[j] for j in order ]; parts = [ parts[j] for j in order ];
value = sum([ u*x for u, x in parts]); value = sum([ u*x for u, x in parts]);
expr = '+'.join([ expr = '+'.join([
f'{x:g}' if u == 1 else f'{Fraction(str(u))}·{x:g}' f'{x:g}' if u == 1 else f'{u}·{x:g}'
for u, x in parts if u > 0 for u, x in parts if u > 0
]); ]);
if as_maximum: if as_maximum:

View File

@ -7,6 +7,7 @@
from __future__ import annotations; from __future__ import annotations;
from src.thirdparty.maths import *;
from src.thirdparty.types import *; from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -47,8 +48,9 @@ class Mask():
return ''.join([ str(m.value) for m in self.values ]); return ''.join([ str(m.value) for m in self.values ]);
@property @property
def decision(self) -> List[int]: def choice(self) -> List[Fraction]:
return [ x.value for x in self.values ]; assert all(x != MaskValue.UNSET for x in self.values);
return [ Fraction(x.value) for x in self.values ];
@property @property
def indexes_set(self) -> List[int]: def indexes_set(self) -> List[int]:
@ -76,17 +78,11 @@ class Mask():
vector2[self.index] = MaskValue.ONE; vector2[self.index] = MaskValue.ONE;
return Mask(vector1), Mask(vector2); return Mask(vector1), Mask(vector2);
def pad_zeros(self) -> Mask: def pad(self, x: MaskValue) -> Mask:
''' '''
Completes mask by filling in unset values with zeros Pads unset values with a give by given value.
''' '''
return Mask([ MaskValue.ZERO if u == MaskValue.UNSET else u for u in self.values ]); return Mask([ x if u == MaskValue.UNSET else u for u in self.values ]);
def pad_ones(self) -> Mask:
'''
Completes mask by filling in unset values with zeros
'''
return Mask([ MaskValue.ONE if u == MaskValue.UNSET else u for u in self.values ]);
@property @property
def support(self) -> List[int]: def support(self) -> List[int]:

View File

@ -5,9 +5,9 @@
# IMPORTS # IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations from __future__ import annotations;
from dataclasses import asdict;
from src.thirdparty.maths import *;
from src.thirdparty.types import *; from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -24,7 +24,8 @@ __all__ = [
@dataclass @dataclass
class SolutionRaw(): class SolutionRaw():
vector: List[float] = field(); order: List[int] = field();
choice: List[Fraction] = field();
items: List[str] = field(); items: List[str] = field();
values: List[float] = field(repr=False); values: List[float] = field(repr=False);
costs: List[float] = field(repr=False); costs: List[float] = field(repr=False);
@ -32,16 +33,12 @@ class SolutionRaw():
class Solution(SolutionRaw): class Solution(SolutionRaw):
@property @property
def support(self) -> List[float]: def support(self) -> List[float]:
return [ i for i, v in enumerate(self.vector) if v > 0 ]; return [ i for i, v in enumerate(self.choice) if v > 0 ];
@property
def vector_support(self) -> List[float]:
return [ v for v in self.vector if v > 0 ];
@property @property
def total_weight(self) -> float: def total_weight(self) -> float:
return sum([ self.vector[i]*x for (i, x) in zip(self.support, self.costs) ]); return sum([ self.choice[i]*x for (i, x) in zip(self.support, self.costs) ]);
@property @property
def total_value(self) -> float: def total_value(self) -> float:
return sum([ self.vector[i]*x for (i, x) in zip(self.support, self.values) ]); return sum([ self.choice[i]*x for (i, x) in zip(self.support, self.values) ]);