master > master: code py - display volle loesung statt padding
This commit is contained in:
parent
3032840a1d
commit
8cba2fdf13
@ -130,13 +130,13 @@ def rucksack_branch_and_bound_algorithm(
|
||||
while not S.empty():
|
||||
# top-Element auslesen und Bound berechnen:
|
||||
A: Mask = S.top();
|
||||
bound_subtree, choice, order_, pad = estimate_lower_bound(mask=A, max_cost=max_cost, costs=costs, values=values, items=items);
|
||||
bound_subtree, choice, order_, state = estimate_lower_bound(mask=A, max_cost=max_cost, costs=costs, values=values, items=items);
|
||||
|
||||
# für logging (irrelevant für Algorithmus):
|
||||
if verbose:
|
||||
step = Step(bound=bound, bound_subtree=bound_subtree, stack_str=str(S), choice=choice, order=order_, indexes=A.indexes_unset, pad=pad);
|
||||
step = Step(bound=bound, bound_subtree=bound_subtree, stack_str=str(S), choice=choice, order=order_, indexes=A.indexes_unset, solution=state);
|
||||
if bound_subtree < bound:
|
||||
if not A.splittable() or pad != MaskValue.UNSET:
|
||||
if state is not None:
|
||||
step.move = EnumBranchAndBoundMove.BOUND;
|
||||
step.bound = bound_subtree;
|
||||
else:
|
||||
@ -147,12 +147,9 @@ def rucksack_branch_and_bound_algorithm(
|
||||
# Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert:
|
||||
if bound_subtree < bound:
|
||||
# Bound aktualisieren, wenn sich A nicht weiter aufteilen od. wenn sich A wie eine einelementige Option behandeln läst:
|
||||
if not A.splittable() or pad != MaskValue.UNSET:
|
||||
if state is not None:
|
||||
bound = bound_subtree;
|
||||
# falls A als einelementige Menge betrachtet werden kann, ersetze unbekannte Werte:
|
||||
if pad != MaskValue.UNSET:
|
||||
A = A.pad(pad);
|
||||
mask = A;
|
||||
mask = state;
|
||||
# Branch sonst
|
||||
else:
|
||||
B, C = A.split();
|
||||
@ -207,7 +204,7 @@ def estimate_lower_bound(
|
||||
costs: np.ndarray,
|
||||
values: np.ndarray,
|
||||
items: np.ndarray,
|
||||
) -> Tuple[float, List[Fraction], List[int], MaskValue]:
|
||||
) -> Tuple[float, List[Fraction], List[int], Optional[Mask]]:
|
||||
'''
|
||||
Wenn partielle Information über den Rucksack festgelegt ist,
|
||||
kann man bei dem unbekannten Teil das Rucksack-Problem
|
||||
@ -229,14 +226,17 @@ def estimate_lower_bound(
|
||||
|
||||
# Für Rest des Rucksacks (Items mit unbekanntem Status):
|
||||
cost_rest = max_cost - cost_rucksack;
|
||||
pad = MaskValue.UNSET;
|
||||
state = None;
|
||||
# Prüfe, ob man als Lösung alles/nichts hinzufügen kann:
|
||||
if len(indexes_unset) > 0 and sum(costs[indexes_unset]) <= cost_rest:
|
||||
pad = MaskValue.ONE;
|
||||
if len(indexes_unset) == 0:
|
||||
state = mask;
|
||||
value_rest = 0;
|
||||
elif sum(costs[indexes_unset]) <= cost_rest:
|
||||
state = mask.pad(MaskValue.ONE);
|
||||
choice[indexes_unset] = Fraction(1);
|
||||
value_rest = sum(values[indexes_unset]);
|
||||
elif len(indexes_unset) > 0 and min(costs[indexes_unset]) > cost_rest:
|
||||
pad = MaskValue.ZERO;
|
||||
elif min(costs[indexes_unset]) > cost_rest:
|
||||
state = mask.pad(MaskValue.ZERO);
|
||||
choice[indexes_unset] = Fraction(0);
|
||||
value_rest = 0;
|
||||
# Sonst mit Greedy-Algorithmus lösen:
|
||||
@ -259,4 +259,4 @@ def estimate_lower_bound(
|
||||
value_max_est = value_rucksack + value_rest;
|
||||
|
||||
# Ausgabe mit -1 multiplizieren (weil maximiert wird):
|
||||
return -value_max_est, choice.tolist(), order.tolist(), pad;
|
||||
return -value_max_est, choice.tolist(), order.tolist(), state;
|
||||
|
@ -113,7 +113,7 @@ def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
|
||||
else:
|
||||
expr = '';
|
||||
bound_str = f'{step.bound:+g}';
|
||||
pad_str = ('' if step.pad == MaskValue.UNSET else step.pad.value);
|
||||
solution_str = f'{step.solution or ""}';
|
||||
move_str = ('' if step.move == EnumBranchAndBoundMove.NONE else step.move.value);
|
||||
if i == index_soln:
|
||||
bound_str = f'* \x1b[92;1m{bound_str}\x1b[0m';
|
||||
@ -122,7 +122,7 @@ def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
|
||||
'bound_subtree': f'{step.bound_subtree:g}',
|
||||
'bound_subtree_sum': expr,
|
||||
'stack': step.stack_str,
|
||||
'pad': f'\x1b[2m{pad_str}\x1b[0m',
|
||||
'solution': f'\x1b[2m{solution_str}\x1b[0m',
|
||||
'move': f'\x1b[2m{move_str}\x1b[0m',
|
||||
});
|
||||
|
||||
@ -130,7 +130,7 @@ def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
|
||||
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
|
||||
repr = tabulate(
|
||||
table,
|
||||
headers=['bound', 'g(TOP(S))', '', 'S — stack', '\x1b[2mpad?\x1b[0m', '\x1b[2mmove\x1b[0m'],
|
||||
headers=['bound', 'g(TOP(S))', '', 'S — stack', '\x1b[2msoln\x1b[0m', '\x1b[2mmove\x1b[0m'],
|
||||
showindex=False,
|
||||
colalign=('right', 'right', 'left', 'right', 'center', 'left'),
|
||||
tablefmt='simple'
|
||||
@ -167,7 +167,6 @@ def display_sum(
|
||||
if not show_all_weights:
|
||||
parts = list(filter(lambda x: x[1] > 0, parts));
|
||||
|
||||
value = sum([ u*x for _, u, x in parts ]);
|
||||
expr = '\x1b[2m + \x1b[0m'.join(map(render, parts));
|
||||
|
||||
if as_maximum:
|
||||
|
@ -43,5 +43,5 @@ class Step():
|
||||
order: List[int] = field();
|
||||
# the indexes upon which the greedy algorithm is carried out:
|
||||
indexes: List[int] = field();
|
||||
pad: MaskValue = field();
|
||||
solution: Optional[Mask] = field();
|
||||
move: EnumBranchAndBoundMove = field(default=EnumBranchAndBoundMove.NONE);
|
||||
|
Loading…
x
Reference in New Issue
Block a user