woche12 ---> master #3
@ -32,14 +32,50 @@ __all__ = [
|
||||
def adaptive_walk_algorithm(
|
||||
landscape: Landscape,
|
||||
r: float,
|
||||
coords_init: tuple,
|
||||
optimise: EnumOptimiseMode,
|
||||
verbose: bool,
|
||||
):
|
||||
'''
|
||||
Führt den Adapative-Walk Algorithmus aus, um ein lokales Minimum zu bestimmen.
|
||||
'''
|
||||
log_warn('Noch nicht implementiert!');
|
||||
return;
|
||||
|
||||
# lege Fitness- und Umgebungsfunktionen fest:
|
||||
match optimise:
|
||||
case EnumOptimiseMode.max:
|
||||
f = lambda x: -landscape.fitness(*x);
|
||||
case _:
|
||||
f = lambda x: landscape.fitness(*x);
|
||||
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
|
||||
label = lambda x: landscape.label(*x);
|
||||
|
||||
# initialisiere
|
||||
x = coords_init;
|
||||
fx = f(x);
|
||||
fy = fx;
|
||||
N = nbhd(x);
|
||||
|
||||
# führe walk aus:
|
||||
while True:
|
||||
# Wähle zufälligen Punkt und berechne fitness-Wert:
|
||||
y = uniform_random_choice(N);
|
||||
fy = f(y);
|
||||
|
||||
# Nur dann aktualisieren, wenn sich f-Wert verbessert:
|
||||
if fy < fx:
|
||||
# Punkt + Umgebung + f-Wert aktualisieren
|
||||
x = y;
|
||||
fx = fy;
|
||||
N = nbhd(x);
|
||||
else:
|
||||
# Nichts machen!
|
||||
pass;
|
||||
|
||||
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
|
||||
if fx <= min([f(y) for y in N], default=fx):
|
||||
break;
|
||||
|
||||
return x;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# METHOD gradient walk
|
||||
@ -48,14 +84,56 @@ def adaptive_walk_algorithm(
|
||||
def gradient_walk_algorithm(
|
||||
landscape: Landscape,
|
||||
r: float,
|
||||
coords_init: tuple,
|
||||
optimise: EnumOptimiseMode,
|
||||
verbose: bool,
|
||||
):
|
||||
'''
|
||||
Führt den Gradient-Descent (bzw. Ascent) Algorithmus aus, um ein lokales Minimum zu bestimmen.
|
||||
'''
|
||||
log_warn('Noch nicht implementiert!');
|
||||
return;
|
||||
|
||||
# lege Fitness- und Umgebungsfunktionen fest:
|
||||
match optimise:
|
||||
case EnumOptimiseMode.max:
|
||||
f = lambda x: -landscape.fitness(*x);
|
||||
case _:
|
||||
f = lambda x: landscape.fitness(*x);
|
||||
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
|
||||
label = lambda x: landscape.label(*x);
|
||||
|
||||
# initialisiere
|
||||
x = coords_init;
|
||||
fx = landscape.fitness(*x);
|
||||
fy = fx;
|
||||
N = nbhd(x);
|
||||
f_values = [f(y) for y in N];
|
||||
fmin = min(f_values);
|
||||
Z = [y for y, fy in zip(N, f_values) if fy == fmin];
|
||||
|
||||
# führe walk aus:
|
||||
while True:
|
||||
# Wähle zufälligen Punkt mit steilstem Abstieg und berechne fitness-Wert:
|
||||
y = uniform_random_choice(Z);
|
||||
fy = fmin;
|
||||
|
||||
# Nur dann aktualisieren, wenn sich f-Wert verbessert:
|
||||
if fy < fx:
|
||||
# Punkt + Umgebung + f-Wert aktualisieren
|
||||
x = y;
|
||||
fx = fy;
|
||||
N = nbhd(y);
|
||||
f_values = [f(y) for y in N];
|
||||
fmin = min(f_values);
|
||||
Z = [y for y, fy in zip(N, f_values) if fy == fmin];
|
||||
else:
|
||||
# Nichts machen!
|
||||
pass;
|
||||
|
||||
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
|
||||
if fx <= min([f(y) for y in N], default=fx):
|
||||
break;
|
||||
|
||||
return x;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# METHOD metropolis walk
|
||||
@ -64,6 +142,8 @@ def gradient_walk_algorithm(
|
||||
def metropolis_walk_algorithm(
|
||||
landscape: Landscape,
|
||||
r: float,
|
||||
coords_init: tuple,
|
||||
T: float,
|
||||
annealing: bool,
|
||||
optimise: EnumOptimiseMode,
|
||||
verbose: bool,
|
||||
@ -71,5 +151,56 @@ def metropolis_walk_algorithm(
|
||||
'''
|
||||
Führt den Metropolis-Walk Algorithmus aus, um ein lokales Minimum zu bestimmen.
|
||||
'''
|
||||
log_warn('Noch nicht implementiert!');
|
||||
return;
|
||||
|
||||
# lege Fitness- und Umgebungsfunktionen fest:
|
||||
match optimise:
|
||||
case EnumOptimiseMode.max:
|
||||
f = lambda x: -landscape.fitness(*x);
|
||||
case _:
|
||||
f = lambda x: landscape.fitness(*x);
|
||||
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
|
||||
label = lambda x: landscape.label(*x);
|
||||
|
||||
# initialisiere
|
||||
x = coords_init;
|
||||
fx = f(x);
|
||||
fy = fx;
|
||||
nbhd_x = nbhd(x);
|
||||
|
||||
# führe walk aus:
|
||||
k = 0;
|
||||
while True:
|
||||
# Wähle zufälligen Punkt und berechne fitness-Wert:
|
||||
y = uniform_random_choice(nbhd_x);
|
||||
r = uniform(0,1);
|
||||
fy = f(y);
|
||||
|
||||
# Nur dann aktualisieren, wenn sich f-Wert verbessert:
|
||||
if fy < fx or r < math.exp(-(fy-fx)/T):
|
||||
# Punkt + Umgebung + f-Wert aktualisieren
|
||||
x = y;
|
||||
fx = fy;
|
||||
nbhd_x = nbhd(x);
|
||||
else:
|
||||
# Nichts machen!
|
||||
pass;
|
||||
|
||||
# »Temperatur« ggf. abkühlen:
|
||||
if annealing:
|
||||
T = cool_temperature(T, k);
|
||||
|
||||
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
|
||||
if fx <= min([f(y) for y in nbhd_x], default=fx):
|
||||
break;
|
||||
|
||||
k += 1;
|
||||
|
||||
return x;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# AUXILIARY METHODS
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def cool_temperature(T: float, k: int, const: float = 1.) -> float:
|
||||
harm = const*(k + 1);
|
||||
return T/(1 + T/harm);
|
||||
|
Loading…
x
Reference in New Issue
Block a user