master > master: notes - A3-2
This commit is contained in:
parent
e66e12269f
commit
f27b219e68
BIN
notes/notes.pdf
BIN
notes/notes.pdf
Binary file not shown.
469
notes/notes.tex
469
notes/notes.tex
@ -31,6 +31,8 @@
|
||||
%% |____ body/woche3/A4.tex
|
||||
%% |____ body/woche4/index.tex
|
||||
%% |____ body/woche4/A1.tex
|
||||
%% |____ body/woche4/A2.tex
|
||||
%% |____ body/woche4/A3.tex
|
||||
%% |____ body/woche4/A4.tex
|
||||
%% |____ back/index.tex
|
||||
%% |____ back/sources.bib
|
||||
@ -117,6 +119,7 @@
|
||||
dvipsnames,
|
||||
}{xcolor}
|
||||
|
||||
\usepackage{makecmds} % need for \provideenvironment
|
||||
\usepackage{inputenc}
|
||||
\usepackage{babel}
|
||||
\usepackage{geometry}
|
||||
@ -306,6 +309,9 @@
|
||||
\providecommand{\powerSet}{}
|
||||
\renewcommand{\powerSet}[1]{\mathop{\powerset}(#1)}
|
||||
|
||||
\providecommand{\blockCases}{}
|
||||
\renewenvironment{blockCases}[2]{\left\{\begin{array}[#1]{#2}}{\end{array}\right.}
|
||||
|
||||
\newcommand{\fieldK}[0]{\mathbb{K}}
|
||||
\newcommand{\reals}[0]{\mathbb{R}}
|
||||
\newcommand{\complex}[0]{\mathbb{C}}
|
||||
@ -1069,7 +1075,7 @@ Per Definition gilt $\norm{f}_{\infty} \in \reals$ gdw. $f$ beschränkt ist.
|
||||
|
||||
\begin{schattierteboxdunn}
|
||||
\begin{claim}
|
||||
\setblocklabel{claim:1:ex:2.1:raj-analysis-ii-notes}
|
||||
\setblocklabel{claim:1:ex:3.1:raj-analysis-ii-notes}
|
||||
Angenommen,
|
||||
so dass $(f_{n})_{n\in\naturals}$
|
||||
genüge folgender Eigenschaft
|
||||
@ -1238,6 +1244,463 @@ Per Definition gilt $\norm{f}_{\infty} \in \reals$ gdw. $f$ beschränkt ist.
|
||||
|
||||
%% ********** END OF FILE: body/woche4/A1.tex **********
|
||||
|
||||
\setcounterafter{section}{2}
|
||||
|
||||
%% ********************************************************************************
|
||||
%% FILE: body/woche4/A2.tex
|
||||
%% ********************************************************************************
|
||||
|
||||
\let\oldsectionname\sectionname
|
||||
\def\sectionname{Aufgabe}
|
||||
\section[]{}
|
||||
\let\sectionname\oldsectionname
|
||||
\label{sec:6}
|
||||
|
||||
\begin{schattierteboxdunn}
|
||||
\begin{claim}
|
||||
\setblocklabel{claim:1:ex:3.2:raj-analysis-ii-notes}
|
||||
Seien $\alpha \in (0, \infty)$.
|
||||
Dann
|
||||
$\displaystyle\sum_{k=1}^{\infty}k^{-\alpha} < \infty$
|
||||
gdw. $\alpha > 1$.
|
||||
\end{claim}
|
||||
\end{schattierteboxdunn}
|
||||
|
||||
\begin{beweis}
|
||||
Sei $N\in\naturals$ mit $N > 1$.
|
||||
Dann
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\eqtag[eq:1:\beweislabel]
|
||||
\displaystyle\sum_{k=1}^{N}k^{-\alpha}
|
||||
&= &k^{-N} + \displaystyle\sum_{k=1}^{N - 1}
|
||||
\displaystyle\int_{t=k}^{k + 1} k^{-\alpha} \dee t\\
|
||||
&\geq &0 + \displaystyle\sum_{k=1}^{N - 1}
|
||||
\displaystyle\int_{t=k}^{k + 1} t^{-\alpha} \dee t
|
||||
= \displaystyle\int_{t=1}^{N} t^{-\alpha} \dee t\\
|
||||
\end{maths}
|
||||
|
||||
und
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\eqtag[eq:2:\beweislabel]
|
||||
\displaystyle\sum_{k=1}^{N}k^{-\alpha}
|
||||
&= &1 + \displaystyle\sum_{k=2}^{N} \displaystyle\int_{t=k-1}^{k} k^{-\alpha} \dee t\\
|
||||
&\leq &1 + \displaystyle\sum_{k=2}^{N}
|
||||
\displaystyle\int_{t=k-1}^{k} t^{-\alpha} \dee t\\
|
||||
&= &1 + \displaystyle\int_{t=1}^{N} t^{-\alpha} \dee t.\\
|
||||
\end{maths}
|
||||
|
||||
Laut Skript (siehe \cite[\S{}11.3,~Bsp.~(c)]{pogorzelskiVLSkript})
|
||||
wissen wir nun, dass
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\eqtag[eq:3:\beweislabel]
|
||||
\displaystyle\int_{t=1}^{\infty} t^{-\alpha} \dee t
|
||||
&= &\begin{blockCases}{mc}{rcl}
|
||||
+\infty &: &\alpha \leq 1\\
|
||||
\frac{1}{1-\alpha} &: &\alpha > 1\\
|
||||
\end{blockCases}.\\
|
||||
\end{maths}
|
||||
|
||||
Folglich gelten
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\displaystyle\sum_{k=1}^{\infty}k^{-\alpha}
|
||||
&= &\displaystyle\limsup_{N \to \infty}\displaystyle\sum_{k=1}^{N}k^{-\alpha}\\
|
||||
&\eqcrefoverset{eq:2:\beweislabel}{\leq}
|
||||
&\displaystyle\limsup_{N \to \infty}\displaystyle\int_{t=1}^{N} t^{-\alpha} \dee t + 1\\
|
||||
&= &\displaystyle\displaystyle\int_{t=1}^{\infty} t^{-\alpha} \dee t + 1\\
|
||||
&\eqcrefoverset{eq:3:\beweislabel}{=}
|
||||
&\frac{1}{1-\alpha} + 1
|
||||
< \infty,\\
|
||||
\end{maths}
|
||||
|
||||
falls $\alpha > 1$, und
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\displaystyle\sum_{k=1}^{\infty}k^{-\alpha}
|
||||
&= &\displaystyle\limsup_{N \to \infty}\displaystyle\sum_{k=1}^{N}k^{-\alpha}\\
|
||||
&\eqcrefoverset{eq:1:\beweislabel}{\geq}
|
||||
&\displaystyle\limsup_{N \to \infty}\displaystyle\int_{t=1}^{N} t^{-\alpha} \dee t\\
|
||||
&= &\displaystyle\int_{t=1}^{\infty} t^{-\alpha} \dee t\\
|
||||
&\eqcrefoverset{eq:3:\beweislabel}{=}
|
||||
&+\infty,\\
|
||||
\end{maths}
|
||||
|
||||
falls $0 < \alpha \leq 1$.
|
||||
Darum gilt die Behauptung.
|
||||
\end{beweis}
|
||||
|
||||
%% ********** END OF FILE: body/woche4/A2.tex **********
|
||||
|
||||
\setcounterafter{section}{3}
|
||||
|
||||
%% ********************************************************************************
|
||||
%% FILE: body/woche4/A3.tex
|
||||
%% ********************************************************************************
|
||||
|
||||
\let\oldsectionname\sectionname
|
||||
\def\sectionname{Aufgabe}
|
||||
\section[]{}
|
||||
\let\sectionname\oldsectionname
|
||||
\label{sec:7}
|
||||
|
||||
Für diese Aufgaben brauchen wir zunächst einmal Lemma, um unsere Arbeit zu erleichtern.
|
||||
|
||||
\begin{lemm}
|
||||
\setblocklabel{lemm:uneigentlich:ex:3.3:raj-analysis-ii-notes}
|
||||
Sei $a\in\reals$ und sei ${h:[a,\infty)\to\reals}$ eine Funktion
|
||||
mit ${h(t) \longrightarrow 0}$ für ${t \longrightarrow +\infty}$.
|
||||
Sei außerdem
|
||||
$(T_{n})_{n} \subseteq [a,\infty)$
|
||||
eine monoton wachsende Folge mit ${T_{n} \longrightarrow \infty}$
|
||||
und so,
|
||||
dass $(T_{n+1}-T_{n})_{n}$ beschränkt ist.
|
||||
Dann ist
|
||||
${\displaystyle\int_{a}^{\infty} h \dee t}$
|
||||
konvergent
|
||||
gdw.
|
||||
$(\displaystyle\int_{a}^{T_{n}} h \dee t)_{n}$
|
||||
konvergent ist.
|
||||
\end{lemm}
|
||||
|
||||
\begin{einzug}[\mytab][\mytab]
|
||||
\begin{beweis}
|
||||
Offensichtlich gilt die \enclosedquote{nur dann wenn}-Richtung.
|
||||
Für die \enclosedquote{wenn}-Richtung,
|
||||
sei angenommen, $(\displaystyle\int_{a}^{T_{n}} h \dee t)_{n}$ konvergiert
|
||||
mit Grenzwert $I \in \reals$.
|
||||
Setze $C \in (0,\infty)$ mit $\sup_{n}T_{n+1}-T_{n} \leq C$.
|
||||
|
||||
Sei $\eps > 0$.
|
||||
Sei $N$ ein genügend großer Index
|
||||
mit $\abs{\int_{a}^{T_{n}} h \dee t - I} < \frac{\eps}{2}$
|
||||
für alle $n \geq N$.
|
||||
Da $f$ gegen $+\infty$ verschwindend ist,
|
||||
existiert ein $\tilde{T}\in[a,\infty)$,
|
||||
so dass $\abs{f(\cdot)} \leq \frac{\eps}{2C}$
|
||||
auf $[\tilde{T},\infty]$.
|
||||
Sei nun $T \in [\max\{T_{N},\tilde{T}\},\infty)$ beliebig.
|
||||
Da $T \geq T_{N}$ und ${(T_{n})_{n}\longrightarrow +\infty}$ monoton,
|
||||
existiert ein $n\geq N$ so, dass $T \in [T_{n},T_{n+1}]$.
|
||||
Da $n \geq N$ und $[T_{n},T]\subseteq[\tilde{T},\infty)$
|
||||
erhält man die Abschätzung
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\absLong{
|
||||
\displaystyle\int_{a}^{T} h(t) \dee t
|
||||
-
|
||||
I
|
||||
}
|
||||
&\leq
|
||||
&\absLong{
|
||||
\displaystyle\int_{a}^{T} h(t) \dee t
|
||||
-
|
||||
\displaystyle\int_{a}^{T_{n}} h(t) \dee t
|
||||
}
|
||||
+ \absLong{
|
||||
\displaystyle\int_{a}^{T_{n}} h(t) \dee t
|
||||
-
|
||||
I
|
||||
}\\
|
||||
&< &\absLong{
|
||||
\displaystyle\int_{T_{n}}^{T} h(t) \dee t
|
||||
}
|
||||
+ \frac{\eps}{2}\\
|
||||
&< &\displaystyle\int_{T_{n}}^{T}
|
||||
\underbrace{
|
||||
\abs{h(t)}
|
||||
}_{\leq \frac{\eps}{2C}}
|
||||
\dee t
|
||||
+ \frac{\eps}{2}\\
|
||||
&\leq &(T-T_{n})\frac{\eps}{2C}
|
||||
+ \frac{\eps}{2}\\
|
||||
&\leq &(T_{n+1}-T_{n})\frac{\eps}{2C}
|
||||
+ \frac{\eps}{2}\\
|
||||
&\leq &C\frac{\eps}{2C}
|
||||
+ \frac{\eps}{2}
|
||||
=\eps.\\
|
||||
\end{maths}
|
||||
|
||||
Darum gilt für genügend großes
|
||||
$T \in [a,\infty)$
|
||||
(in Abhängigkeit von $\eps$),
|
||||
dass $\abs{
|
||||
\displaystyle\int_{a}^{T} h(t) \dee t
|
||||
-
|
||||
I
|
||||
} < \eps$.
|
||||
Da dies für alle $\eps > 0$ gilt
|
||||
ist
|
||||
$(\displaystyle\int_{a}^{T} h \dee t)_{T\in[a,\infty)}$
|
||||
konvergent
|
||||
(mit Grenzwert $I$).
|
||||
Also konvergiert $\displaystyle\int_{a}^{\infty} h \dee t$.
|
||||
\end{beweis}
|
||||
\end{einzug}
|
||||
|
||||
\begin{enumerate}{\bfseries (a)}
|
||||
%% A3(a)
|
||||
\item
|
||||
\begin{schattierteboxdunn}
|
||||
\begin{claim}
|
||||
\setblocklabel{claim:1:ex:3.3a:raj-analysis-ii-notes}
|
||||
Sei $f:\reals\ohne\{0\}\to\reals$
|
||||
definiert durch $f(x)=\frac{\sin(x)}{x}$.
|
||||
Dann konvergiert
|
||||
$\displaystyle\int_{x=1}^{\infty} f \dee x$.
|
||||
\end{claim}
|
||||
\end{schattierteboxdunn}
|
||||
|
||||
\begin{beweis}
|
||||
Für $c \in (0, \infty)$ beobachte, dass
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\eqtag[eq:1:\beweislabel]
|
||||
\absLong{
|
||||
\displaystyle\int_{c}^{c + 2\pi}
|
||||
\frac{\sin(x)}{x}
|
||||
\dee x
|
||||
}
|
||||
&= &\absLong{
|
||||
\displaystyle\int_{c}^{c + 2\pi}
|
||||
\frac{\sin(x)}{x}
|
||||
\dee x
|
||||
-
|
||||
\displaystyle\int_{c}^{c + 2\pi}
|
||||
\frac{\sin(x)}{c}
|
||||
\dee x
|
||||
}\\
|
||||
&&\text{da $\int_{c}^{c + 2\pi}\sin(x)\dee x = [-\cos(x)]_{c}^{c+2\pi}=0$}\\
|
||||
&= &\absLong{
|
||||
\displaystyle\int_{c}^{c + 2\pi}
|
||||
\sin(x)\cdot(\frac{1}{x} - \frac{1}{c})
|
||||
\dee x
|
||||
}\\
|
||||
&\leq &\displaystyle\int_{c}^{c + 2\pi}
|
||||
\underbrace{
|
||||
\abs{\sin(x)}
|
||||
}_{\leq 1}
|
||||
\underbrace{
|
||||
\abs{\frac{1}{x} - \frac{1}{c}}
|
||||
}_{\substack{
|
||||
\leq \frac{1}{c} - \frac{1}{c + 2\pi}\\
|
||||
= \frac{2\pi}{c(c + 2\pi)}
|
||||
}}
|
||||
\dee x\\
|
||||
&\leq &2\pi \cdot \frac{2\pi}{c(c + 2\pi)}
|
||||
\leq (\frac{2\pi}{c})^{2}.\\
|
||||
\end{maths}
|
||||
|
||||
Da $f$ offensichtlich gegen $+\infty$ verschwindend ist,
|
||||
laut \Cref{lemm:uneigentlich:ex:3.3:raj-analysis-ii-notes}
|
||||
reicht es aus zu zeigen,
|
||||
dass
|
||||
$(\int_{1}^{2\pi n}f\dee x)_{n\in\naturals}$ konvergiert.
|
||||
|
||||
Sei hiefür $\eps > 0$ beliebig.
|
||||
Da $\sum_{k=1}^{\infty}\frac{1}{k^{2}}<\infty$, wissen wir,
|
||||
dass ein $N\in\naturals$ existiert
|
||||
so dass
|
||||
$\abs{
|
||||
\sum_{k=1}^{n_{1}} \frac{1}{k^{2}}
|
||||
-
|
||||
\sum_{k=1}^{n_{2}} \frac{1}{k^{2}}
|
||||
} < \frac{\eps}{3}$
|
||||
für alle $n_{1},n_{2} \geq N$.
|
||||
\OE wähle $N > \frac{3}{\eps}$.
|
||||
Für $n_{1},n_{2} \geq N$ berechnen wir daher:
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
\absLong{
|
||||
\displaystyle\int_{1}^{2\pi n_{1}} f \dee x
|
||||
-
|
||||
\displaystyle\int_{1}^{2\pi n_{2}} f \dee x
|
||||
}
|
||||
&=
|
||||
&\absLong{
|
||||
\displaystyle\int_{2\pi \min\{n_{1},n_{2}\}}^{2\pi \max\{n_{1},n_{2}\}} f \dee x
|
||||
}\\
|
||||
&=
|
||||
&\absLong{
|
||||
\displaystyle\sum_{k=\min\{n_{1},n_{2}\}}^{\max\{n_{1},n_{2}\}-1}
|
||||
\displaystyle\int_{2\pi k}^{2\pi (k+1)} f \dee x
|
||||
}\\
|
||||
&=
|
||||
&\displaystyle\sum_{k=\min\{n_{1},n_{2}\}}^{\max\{n_{1},n_{2}\}-1}
|
||||
\absLong{
|
||||
\displaystyle\int_{2\pi k}^{2\pi (k+1)} f \dee x
|
||||
}\\
|
||||
&\eqcrefoverset{eq:1:\beweislabel}{\leq}
|
||||
&\displaystyle\sum_{k=\min\{n_{1},n_{2}\}}^{\max\{n_{1},n_{2}\}-1}
|
||||
(\frac{2\pi}{2\pi k})^{2}\\
|
||||
&=
|
||||
&\absLong{
|
||||
\displaystyle\sum_{1}^{n_{1}} \frac{1}{k^{2}}
|
||||
-
|
||||
\displaystyle\sum_{1}^{n_{2}} \frac{1}{k^{2}}
|
||||
}
|
||||
< \eps.\\
|
||||
\end{maths}
|
||||
|
||||
Es folgt, dass
|
||||
$(\int_{1}^{2\pi n}f\dee x)_{n\in\naturals}\subseteq\reals$
|
||||
eine Cauchy-Folge ist und wegen Vollständigkeit von $\reals$ konvergent.
|
||||
Laut \Cref{lemm:uneigentlich:ex:3.3:raj-analysis-ii-notes}
|
||||
existiert damit $\int_{1}^{\infty} f \dee x$.
|
||||
\end{beweis}
|
||||
|
||||
%% A3(b)
|
||||
\item
|
||||
\begin{schattierteboxdunn}
|
||||
\begin{claim}
|
||||
\setblocklabel{claim:1:ex:3.3b:raj-analysis-ii-notes}
|
||||
$\int_{x=1}^{\infty} \abs{\frac{\sin(x)}{x}} \dee x$
|
||||
divergiert gegen $+\infty$.
|
||||
\end{claim}
|
||||
\end{schattierteboxdunn}
|
||||
|
||||
\begin{beweis}
|
||||
\end{beweis}
|
||||
|
||||
%% A3(c)
|
||||
\item
|
||||
\begin{schattierteboxdunn}
|
||||
\begin{claim}
|
||||
\setblocklabel{claim:1:ex:3.3c:raj-analysis-ii-notes}
|
||||
Sei $g:\reals\ohne\{0\}\to\reals$
|
||||
definiert durch $g(x)=\frac{\sin(x)}{x}$.
|
||||
Dann divergiert
|
||||
$\displaystyle\int_{x=1}^{\infty} g \dee x$
|
||||
gegen $+\infty$.
|
||||
\end{claim}
|
||||
\end{schattierteboxdunn}
|
||||
|
||||
Um dies zu beweisen brauchen wir ein kleines Zwischenresultat.
|
||||
|
||||
\begin{lemm}
|
||||
\setblocklabel{lemm:1:ex:3.3c:raj-analysis-ii-notes}
|
||||
Für $k, c \in [0, \infty)$
|
||||
mit $k \geq 1$
|
||||
ist
|
||||
${I_{k,c} \coloneq \displaystyle\int_{x=1}^{\infty} \frac{\sin(kx - c)}{x} \dee x}$
|
||||
konvergent.
|
||||
\end{lemm}
|
||||
|
||||
\begin{einzug}[\mytab][\mytab]
|
||||
\begin{beweis}
|
||||
Schreibe
|
||||
${I_{k,c}(T) \coloneq \displaystyle\int_{x=1}^{T} \frac{\sin(kx - c)}{x} \dee x}$
|
||||
für $T \in [1, \infty)$.
|
||||
Wegen Aufgabe 3(a) wissen wir bereits,
|
||||
dass
|
||||
${I_{1,0}(T) \longrightarrow I_{1,0} \in \reals}$
|
||||
für ${T \longrightarrow +\infty}$.
|
||||
Für $T \in [1, \infty)$ gilt
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
I_{k,c}(T)
|
||||
&=
|
||||
&\displaystyle\int_{1}^{T}
|
||||
\frac{\sin(kx - c)}{kx-c + c}
|
||||
\cdot u^{\prime}
|
||||
\dee u\\
|
||||
&&\text{mit $u(x) \coloneq kx - c$}\\
|
||||
&=
|
||||
&\displaystyle\int_{k + c}^{kT + c}
|
||||
\frac{\sin(u)}{u + c}
|
||||
\dee u\\
|
||||
&=
|
||||
&\displaystyle\int_{1}^{kT + c}
|
||||
\frac{\sin(u)}{u}
|
||||
\dee u
|
||||
-\underbrace{
|
||||
\displaystyle\int_{1}^{kT + c}
|
||||
\sin(u)\cdot(\frac{1}{u}-\frac{1}{u+c})
|
||||
\dee u
|
||||
}_{\eqcolon D_{c}(kT + c)}\\
|
||||
&&-\underbrace{
|
||||
\displaystyle\int_{1}^{k + c}
|
||||
\frac{\sin(u)}{u + c}
|
||||
\dee u
|
||||
}_{\eqcolon E_{k,c}}\\
|
||||
&= &I_{1,0}(kT + c) + D_{c}(kT + c) + E_{k,c}.\\
|
||||
\end{maths}
|
||||
|
||||
Wegen Stetigkeit von ${[1,k+c] \ni x \mapsto \frac{\sin(u)}{u + c}}$,
|
||||
ist diese Funktion Riemann-integrierbar.
|
||||
Also ist $E_{k,c} \in \reals$ wohldefiniert.
|
||||
Wie oben wissen wir, dass
|
||||
${T \longrightarrow +\infty}$
|
||||
$\Rightarrow$
|
||||
${kT + c \longrightarrow +\infty}$
|
||||
$\Rightarrow$
|
||||
${I_{1,0}(kT+c) \longrightarrow I_{1,0} \in \reals}$.
|
||||
Darum, um die Konvergenz von $I_{k,c}$ zu zeigen,
|
||||
müssen wir lediglich die Konvergenz von
|
||||
$(D_{c}(kT + c))_{T\in[1,\infty)}$
|
||||
zeigen.
|
||||
|
||||
Nebenrechnung:
|
||||
$\abs{\sin(u)\cdot(\frac{1}{u}-\frac{1}{u+c})}
|
||||
=\abs{\sin(u)}\cdot\frac{c}{u(u+c)}
|
||||
\leq \frac{c}{u^{2}}$
|
||||
für $u\in[1,\infty)$.
|
||||
Da $\int_{u=1}^{\infty} \frac{c}{u^{2}} \dee u$ existiert,
|
||||
ist somit der Bertrag der stetigen Funktion
|
||||
${[1,\infty)\ni u \mapsto \sin(u)\cdot(\frac{1}{u}-\frac{1}{u+c})}$
|
||||
uneigentlich Riemann-integrierbar.
|
||||
Folglich ist diese Funktion (ohne Betrag)
|
||||
uneigentlich Riemann-integrierbar.
|
||||
Insbesondere ist $(D_{c}(T))_{T\in[1,\infty)}$
|
||||
und somit auch $(D_{c}(kT + c))_{T\in[1,\infty)}$
|
||||
konvergent.
|
||||
|
||||
Darum konvergiert $(I_{k,c}(T))_{T\in[1,\infty)}$.
|
||||
\Dh $\displaystyle\int_{x=1}^{\infty} \frac{\sin(kx - c)}{x} \dee x$ existiert.
|
||||
\end{beweis}
|
||||
\end{einzug}
|
||||
|
||||
\def\beweislabel{claim:1:ex:3.3c:raj-analysis-ii-notes}
|
||||
Jetzt können wir mit dem Beweis von \Cref{\beweislabel} fortsetzen.
|
||||
|
||||
\begin{beweis}[von \Cref{\beweislabel}]
|
||||
Sei $T \in [1,\infty)$.
|
||||
Schreibe ${J(T) \coloneq \int_{x=1}^{T} g \dee x}$.
|
||||
Für $x\in[1,\infty)$ gilt
|
||||
$%
|
||||
g(x) = \frac{\sin^{2}(x)}{x}
|
||||
= \frac{1}{2}(\frac{1}{x} - \frac{\cos(2x)}{x})
|
||||
= \frac{1}{2}(\frac{1}{x} - \frac{\sin(\frac{\pi}{2} - 2x)}{x})
|
||||
= \frac{1}{2}(\frac{1}{x} + \frac{\sin(2x - \frac{\pi}{2})}{x})
|
||||
= \frac{1}{2}(\frac{1}{x} + h_{2,\frac{\pi}{2}}(x))
|
||||
$.
|
||||
Darum gilt
|
||||
|
||||
\begin{maths}[mc]{rcl}
|
||||
J(T)
|
||||
&=
|
||||
&\frac{1}{2}
|
||||
\displaystyle\int_{x=1}^{T}\frac{1}{x}\dee x
|
||||
+
|
||||
\frac{1}{2}
|
||||
\displaystyle\int_{x=1}^{T}h_{2,\frac{\pi}{2}}(x) \dee x\\
|
||||
&= &\frac{1}{2}\log(T) - \frac{1}{2}I_{2,\frac{\pi}{2}}(T).\\
|
||||
\end{maths}
|
||||
|
||||
Da
|
||||
${(I_{2,\frac{\pi}{2}}(T))_{T\in[1,\infty)} \longrightarrow I_{2,\frac{\pi}{2}} \in \reals}$
|
||||
(siehe \Cref{lemm:1:ex:3.3c:raj-analysis-ii-notes})
|
||||
und
|
||||
${(\log(T))_{T\in[1,\infty)} \longrightarrow +\infty}$,
|
||||
folgt ${(J(T))_{T\in[1,\infty)} \longrightarrow +\infty}$.
|
||||
\Dh $\displaystyle\int_{x=1}^{\infty} g \dee x = +\infty$.
|
||||
\end{beweis}
|
||||
\end{enumerate}
|
||||
|
||||
%% ********** END OF FILE: body/woche4/A3.tex **********
|
||||
|
||||
\setcounterafter{section}{4}
|
||||
|
||||
%% ********************************************************************************
|
||||
@ -1248,7 +1711,7 @@ Per Definition gilt $\norm{f}_{\infty} \in \reals$ gdw. $f$ beschränkt ist.
|
||||
\def\sectionname{Aufgabe}
|
||||
\section[]{}
|
||||
\let\sectionname\oldsectionname
|
||||
\label{sec:6}
|
||||
\label{sec:8}
|
||||
|
||||
\begin{enumerate}{\bfseries (a)}
|
||||
\setcounterafter{enumi}{2}
|
||||
@ -1484,7 +1947,7 @@ Otto Forster.
|
||||
\newblock {Grundkurs Mathematik}. Springer Spektrum, Wiesbaden, 12 edition,
|
||||
2016.
|
||||
|
||||
\bibitem[Pog 2]{pogorzelski}
|
||||
\bibitem[Pog 2]{pogorzelskiVLSkript}
|
||||
Felix Pogorzelski.
|
||||
\newblock {Vorlesungsskript: Analysis I--II}, 2021--2.
|
||||
\newblock {basierend auf dem Skript von Daniel Lenz 2013--14 + 2020--21}.
|
||||
|
Loading…
Reference in New Issue
Block a user