master > master: SKA4

This commit is contained in:
RD 2020-11-21 12:47:38 +01:00
parent 864935873e
commit 4ff3a3f718
2 changed files with 663 additions and 20 deletions

Binary file not shown.

View File

@ -3078,16 +3078,16 @@ Seien $X$, $Y$ nicht leere Mengen und ${f:X\to Y}$ eine Funktion.
\label{ska:4:ex:1}
\let\sectionname\altsectionname
Seien $X$, $Y$ nicht leere Mengen.
Einer Abbildung, $f:X\to Y$,
können wir eindeutig die Relation
$\graph(f):=\{(x,y)\in X\times Y\mid f(x)=y\}$
zuordnen. Dies nennt sich der \textbf{Graph von $f$}
(siehe \cite[\S{}2.3]{sinn2020}---dort wird dies mit $\Gamma_{f}$ bezeichnet).
Hier ist $\graph(f)$ also eine Relation auf $X\times Y$.
In der Tat \emph{setzen} manche Werke Funktionen mit ihrem Graphen gleich
(siehe bspw. \cite[S.11]{jech1997}),
aber dies ist streng genommen nicht die ganze Wahrheit.
Seien $X$, $Y$ nicht leere Mengen.
Einer Abbildung, $f:X\to Y$,
können wir eindeutig die Relation
$\graph(f):=\{(x,y)\in X\times Y\mid f(x)=y\}$
zuordnen. Dies nennt sich der \textbf{Graph von $f$}
(siehe \cite[\S{}2.3]{sinn2020}---dort wird dies mit $\Gamma_{f}$ bezeichnet).
Hier ist $\graph(f)$ also eine Relation auf $X\times Y$.
In der Tat \emph{setzen} manche Werke Funktionen mit ihrem Graphen gleich
(siehe bspw. \cite[S.11]{jech1997}),
aber dies ist streng genommen nicht die ganze Wahrheit.
%% SKA 4-2
\let\altsectionname\sectionname
@ -3096,7 +3096,67 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:2}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\textbf{Hinweis:} Hier scheint im Punkt (ii) etwas verwechselt worden zu sein.
Seien $M$, $N$ Mengen und $R\subseteq M\times N$.
\begin{claim}
\makelabel{claim:main:ska:4:ex:2}
Angenommen, $R$ erfülle folgende Eigenschaften:
\begin{kompaktenum}{\bfseries (i)}[\rtab][\rtab]
\item\punktlabel{1}
$\forall{x\in M:~}\exists{y\in N:~}(x,y)\in R$
\item\punktlabel{2}
$\forall{x\in M:~}\forall{y,y'\in N:~}
(x,y),(x,y')\in R
\Rightarrow y=y'$
\end{kompaktenum}
Dann existiert eine (notwendigerweise eindeutige) Funktion,
${f:M\to N}$,
so dass $\graph(f)=R$.
\end{claim}
\begin{einzug}[\rtab][\rtab]
\begin{proof}
Wir definieren ${f:M\to N}$ durch
\begin{mathe}[mc]{rcl}
f(x) &= &y\\
\end{mathe}
für $(x,y)\in R$.
Offensichtlich gilt
$\graph(f)
=\{(x,y)\in M\times N\mid f(x)=y\}
=\{(x,y)\in M\times N\mid (x,y)\in R\}
=R$.
\textbf{Zu zeigen:}
(1) $f$ ist überall definiert;
(2) $f$ ist wohldefiniert.
\begin{kompaktenum}[\rtab][\rtab]
\item[\uwave{{\bfseries Überall definiert:}}]
Sei $x\in M$.
\textbf{Zu zeigen:} $f(x)=y$ für ein $y\in N$.\\
Eigenschaft \punktlabel{1} besagt, dass ein $y\in M$ existiert,
so dass $(x,y)\in R$.
Per Konstruktion erhalten wir, dass $f(x)=y$ gilt.
\item[\uwave{{\bfseries Wohldefiniertheit:}}]
Seien $x\in M$ und $y,y'\in N$.
Angenommen, $f(x)=y$ und $f(x)=y'$.\\
\textbf{Zu zeigen:} $y=y'$.\\
Aus $f(x)=y$ und $f(x)=y'$
folgt $(x,y),(x,y')\in R$ per Konstruktion von $f$.\\
Eigenschaft \punktlabel{2} besagt, dass $y=y'$.
\end{kompaktenum}
Darum ist $f$ eine Abbildung zwischen $M$ und $N$
und $\graph(f)=R$.
\end{proof}
\end{einzug}
%% SKA 4-3
\let\altsectionname\sectionname
@ -3105,7 +3165,134 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:3}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
Sei $X=\{a,b,c\}$ und betrachte die binäre Relation,
$(\Pot(X),\leq)$, definiert durch
\begin{mathe}[mc]{rcl}
A\leq B &\Longleftrightarrow &X\ohne A\subseteq X\ohne B\\
\end{mathe}
für $A,B\in\Pot(X)$.
\begin{claim*}
$(\Pot(X),\leq)$ ist eine partielle Ordnung (auch »Halbordnung« genannt).
\end{claim*}
Es gibt nun 3 Ansätze, um dies zu zeigen.
\begin{proof}[Ansatz I][Ansatz I]
Beobachte, dass für $A,B\in\Pot(X)$
\begin{mathe}[mc]{rcl}
A\leq B
&\textoverset{Defn}{\Longleftrightarrow}
&X\ohne A\subseteq X\ohne B\\
&\Longrightarrow
&X\ohne (X\ohne A)\supseteq X\ohne (X\ohne B)\\
&\Longrightarrow
&A\supseteq B,
\,\text{da $A,B\subseteq X$}\\
&\Longrightarrow
&X\ohne A\subseteq X\ohne B\\
&\textoverset{Defn}{\Longleftrightarrow}
&A\leq B,\\
\end{mathe}
also $A\leq B\Leftrightarrow A\supseteq B$.
Darum kann $(\Pot(X),\leq)$ mit $(\Pot(X),\supseteq)$
identifiziert werden.
Letzteres ist bekanntermaßen eine Halbordnung.
\end{proof}
\begin{proof}[Ansatz II][Ansatz II]
Im konkreten Falle von $X=\{a,b,c\}$ können wir die Relation
durch ein \emph{Hasse-Diagramm} skizzieren:
\hraum
{\footnotesize
\begin{tikzpicture}[node distance=1.5cm, thick]
\pgfmathsetmacro\habst{3}
\pgfmathsetmacro\vabst{2}
\node[label=below:{$X$}] (Set1) at (0*\habst,0*\vabst) {$\bullet$};
\node[label=left:{$\{a,b\}$}] (SetAB) at (-1*\habst,1*\vabst) {$\bullet$};
\node[label=above:{$\{a,c\}$}] (SetAC) at (0*\habst,1*\vabst) {$\bullet$};
\node[label=right:{$\{b,c\}$}] (SetBC) at (1*\habst,1*\vabst) {$\bullet$};
\node[label=left:{$\{a\}$}] (SetA) at (-1*\habst,2*\vabst) {$\bullet$};
\node[label=below:{$\{b\}$}] (SetB) at (0*\habst,2*\vabst) {$\bullet$};
\node[label=right:{$\{c\}$}] (SetC) at (1*\habst,2*\vabst) {$\bullet$};
\node[label=above:{$\leer$}] (Set0) at (0*\habst,3*\vabst) {$\bullet$};
\draw (Set1) edge [->] (SetAB);
\draw (Set1) edge [->] (SetAC);
\draw (Set1) edge [->] (SetBC);
\draw (SetAB) edge [->] (SetA);
\draw (SetAB) edge [->] (SetB);
\draw (SetAC) edge [->] (SetA);
\draw (SetAC) edge [->] (SetC);
\draw (SetBC) edge [->] (SetB);
\draw (SetBC) edge [->] (SetC);
\draw (SetA) edge [->] (Set0);
\draw (SetB) edge [->] (Set0);
\draw (SetC) edge [->] (Set0);
\end{tikzpicture}}
\hraum
Man sieht, dass dies einen \emph{Verband} und damit insbesondere eine Halbordnung bildet.
\end{proof}
\begin{proof}[Ansatz III][Ansatz III]
Wir gehen die Axiome einer Halbordnung durch:
\begin{kompaktenum}[\rtab][\rtab]
\item[\uwave{{\itshape Reflexivität:}}]
Sei $A\in\Pot(X)$ beliebig.
\textbf{Zu zeigen:} $A\leq A$.\\
Offensichtlich gilt $X\ohne A\subseteq X\ohne A$.\\
Per Konstruktion gilt also $A\leq A$.
\item[\uwave{{\itshape Antisymmetrie:}}]
Seien $ A, A'\in\Pot(X)$ beliebig.\\
\textbf{Zu zeigen:} $A\leq A'$ und $A'\leq A$ $\Rightarrow$ $A=A'$.\\
Es gilt
\begin{mathe}[mc]{rclql}
A\leq A'\,\text{und}\, A'\leq A
&\Longleftrightarrow
&X\ohne A\subseteq X\ohne A'
\,\text{und}\,
X\ohne A'\subseteq X\ohne A
&\text{(per Konstruktion)}\\
&\Longrightarrow
&X\ohne A=X\ohne A'
&\text{(per Definition von Mengengleichheit)}\\
&\Longrightarrow
&A=A',
&\text{da $A,A'\subseteq X$}.\\
\end{mathe}
\item[\uwave{{\itshape Transitivität:}}]
Seien $A, A',(a'',b'')\in\Pot(X)$ beliebig.\\
\textbf{Zu zeigen:} $A\leq A'$ und $A'\leq A''$ $\Rightarrow$ $A\leq A''$.\\
Es gilt
\begin{mathe}[mc]{rcl}
A\leq A'\,\text{und}\, A'\leq A''
&\Longleftrightarrow
&X\ohne A\subseteq X\ohne A'
\,\text{und}\,
X\ohne A'\subseteq X\ohne A''
\,\text{(per Konstruktion)}\\
&\Longrightarrow
&X\ohne A\subseteq X\ohne A''\\
&\Longleftrightarrow
&A\leq A''
\,\text{(per Konstruktion)}.\\
\end{mathe}
\end{kompaktenum}
Darum erfüllt $(\Pot(X),\leq)$ die Axiome einer Halbordnung.
\end{proof}
%% SKA 4-4
\let\altsectionname\sectionname
@ -3114,7 +3301,71 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:4}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
Betrachten wir die Halbordnung aus \cite[Beispiel 2.4.2(2)]{sinn2020}.
Es sei also $C=\{a,b,c\}$ und
die durch folgendes \emph{Hasse-Diagramm} dargestellte Ordnungsrelation auf $Pot(C)$:
\hraum
{\footnotesize
\begin{tikzpicture}[node distance=1.5cm, thick]
\pgfmathsetmacro\habst{3}
\pgfmathsetmacro\vabst{2}
\node[label=above:{$C$}] (Set1) at (0*\habst,3*\vabst) {$\bullet$};
\node[label=left:{$\{a,b\}$}] (SetAB) at (-1*\habst,2*\vabst) {$\bullet$};
\node[label=below:{$\{a,c\}$}] (SetAC) at (0*\habst,2*\vabst) {$\bullet$};
\node[label=right:{$\{b,c\}$}] (SetBC) at (1*\habst,2*\vabst) {$\bullet$};
\node[label=left:{$\{a\}$}] (SetA) at (-1*\habst,1*\vabst) {$\bullet$};
\node[label=above:{$\{b\}$}] (SetB) at (0*\habst,1*\vabst) {$\bullet$};
\node[label=right:{$\{c\}$}] (SetC) at (1*\habst,1*\vabst) {$\bullet$};
\node[label=below:{$\leer$}] (Set0) at (0*\habst,0*\vabst) {$\bullet$};
\draw (Set0) edge [->] (SetA);
\draw (Set0) edge [->] (SetB);
\draw (Set0) edge [->] (SetC);
\draw (SetA) edge [->] (SetAB);
\draw (SetA) edge [->] (SetAC);
\draw (SetB) edge [->] (SetAB);
\draw (SetB) edge [->] (SetBC);
\draw (SetC) edge [->] (SetAC);
\draw (SetC) edge [->] (SetBC);
\draw (SetAB) edge [->] (Set1);
\draw (SetAC) edge [->] (Set1);
\draw (SetBC) edge [->] (Set1);
\end{tikzpicture}}
\hraum
Wenn wir das Element $\leer$ von $\Pot(C)$ entfernen sieht die Struktur folgendermaßen aus
\hraum
{\footnotesize
\begin{tikzpicture}[node distance=1.5cm, thick]
\pgfmathsetmacro\habst{3}
\pgfmathsetmacro\vabst{2}
\node[label=above:{$C$}] (Set1) at (0*\habst,3*\vabst) {$\bullet$};
\node[label=left:{$\{a,b\}$}] (SetAB) at (-1*\habst,2*\vabst) {$\bullet$};
\node[label=below:{$\{a,c\}$}] (SetAC) at (0*\habst,2*\vabst) {$\bullet$};
\node[label=right:{$\{b,c\}$}] (SetBC) at (1*\habst,2*\vabst) {$\bullet$};
\node[label=left:{$\{a\}$}] (SetA) at (-1*\habst,1*\vabst) {$\bullet$};
\node[label=above:{$\{b\}$}] (SetB) at (0*\habst,1*\vabst) {$\bullet$};
\node[label=right:{$\{c\}$}] (SetC) at (1*\habst,1*\vabst) {$\bullet$};
\draw (SetA) edge [->] (SetAB);
\draw (SetA) edge [->] (SetAC);
\draw (SetB) edge [->] (SetAB);
\draw (SetB) edge [->] (SetBC);
\draw (SetC) edge [->] (SetAC);
\draw (SetC) edge [->] (SetBC);
\draw (SetAB) edge [->] (Set1);
\draw (SetAC) edge [->] (Set1);
\draw (SetBC) edge [->] (Set1);
\end{tikzpicture}}
\hraum
Offensichtlich hat $(\Pot(C)\ohne\{\leer\},\subseteq)$ kein kleinstes Element.
Die Menge der minimalen Elementen ist $\{\{a\},\{b\},\{c\}\}$,
d.\,h. es gibt $3$ minimale Elemente.
%% SKA 4-5
\let\altsectionname\sectionname
@ -3123,7 +3374,35 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:5}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
Sei $W$ die Menge aller Wörter und $\Sigma$ die Menge aller Buchstaben.
O.\,E. können wir annehmen, dass jedes Wort $w\in W$ der Länge $|w|\geq 2$ ist.
(In Sprachen wie Englisch, Russisch, usw. ist dies nicht der Fall,
aber wir könnten diese trivialen Wörter einfach ausschließen.)
Betrachten wir die Relation $(W,\sim)$ gegeben durch
\begin{mathe}[mc]{rcl}
\eqtag[eq:1:ska:4:ex:5]
w\sim w' &:\Longleftrightarrow &f(w)=f(w),
\end{mathe}
wobei
\begin{mathe}[mc]{rcccl}
f &: &W &\to &\Sigma\\
&: &w &\mapsto &\text{1. Buchstabe in $w$}\\
\end{mathe}
Dann per Konstruktion \uline{reduziert} $f$
die Relation $(W,\sim)$ auf $(\Sigma,=)$.
Aufgrund dessen und da $(\Sigma,=)$ eine Äquivalenzrelation ist,
ist $(W,\sim)$ automatisch eine Äquivalenzrelation auch.
Eigentlich spielt est keine Rolle, wie die Funktion, $f$, aussieht.
Solange die Reduktion \eqcref{eq:1:ska:4:ex:5} gilt,
bleibt $(W,\sim)$ eine Äquivalenzrelation.
Dies gilt also insbesondere ebenfalls,
wenn $f$ den zweitletzten Buchstaben von Wörtern berechnet.
%% SKA 4-6
\let\altsectionname\sectionname
@ -3132,7 +3411,34 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:6}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\begin{enumerate}{\bfseries (a)}
%% SKA 4-6a
\item
\begin{mathe}[mc]{rcl}
\sum_{i=2}^{6}(-1)^{i}i^{2}
&= &(-1)^{2}\cdot 2^{2}
+(-1)^{3}\cdot 3^{2}
+(-1)^{4}\cdot 4^{2}
+(-1)^{5}\cdot 5^{2}
+(-1)^{6}\cdot 6^{2}\\
&= &4-9+16-25+36
= 22\\
\end{mathe}
%% SKA 4-6b
\item
\begin{mathe}[mc]{rcl}
\prod_{j=1}^{4}(2j-1)
&= &(2\cdot 1 - 1)
+(2\cdot 2 - 1)
+(2\cdot 3 - 1)
+(2\cdot 4 - 1)\\
&= &1-3+5-7
= -4\\
\end{mathe}
\end{enumerate}
%% SKA 4-7
\let\altsectionname\sectionname
@ -3141,7 +3447,94 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:7}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\begin{claim}
\makelabel{claim:main:ska:4:ex:7}
Bezeichne mit $\Phi(n)$ die Aussage
\begin{mathe}[mc]{rcl}
\eqcref{eq:1:\beweislabel}
\sum_{i=1}^{n}(-1)^{i}i^{2} &= &(-1)^{n}\frac{1}{2}n(n+1).\\
\end{mathe}
Dann gilt $\forall{n\in\ntrlpos:~}\Phi(n)$.
\end{claim}
\begin{einzug}[\rtab][\rtab]
\begin{proof}
Wir zeigen \Cref{\beweislabel} stumpf per Induktion.
\begin{kompaktenum}[\rtab][\rtab]
\item[\uwave{{\bfseries Induktionsanfang:}}]
Sei $n=1$. Dann
\begin{mathe}[mc]{rcl}
\sum_{i=1}^{n}(-1)^{i}i^{2}
&= &(-1)^{1}1^{2} = -1\\
(-1)^{n}\frac{1}{2}n(n+1)
&= &(-1)^{1}\frac{1}{2}\cdot 1\cdot (1+1) = -1\\
\end{mathe}
Also gilt \eqcref{eq:1:\beweislabel}.
Also gilt $\Phi(1)$
\item[\uwave{{\bfseries Induktionsvoraussetzung:}}]
Sei $n>1$.
Angenommen, $\Phi(n-1)$ gilt.
\item[\uwave{{\bfseries Induktionsschritt:}}]
\textbf{Zu zeigen:} $\Phi(n)$ gilt, d.\,h.
Gleichung \eqcref{eq:1:\beweislabel} gilt.\\
Es gilt
\begin{mathe}[mc]{rcl}
\sum_{i=1}^{n}(-1)^{i}i^{2}
&= &\sum_{i=1}^{n-1}(-1)^{i}i^{2} + (-1)^{n}n^{2}\\
&= &(-1)^{n-1}\frac{1}{2}(n-1)(n-1+1) + (-1)^{n}n^{2}\\
&&\text{wegen der IV}\\
&= &(-1)^{n}\cdot(-\frac{1}{2}n(n-1) + n^{2})\\
&= &(-1)^{n}\cdot(-\frac{1}{2}n^{2} + \frac{1}{2}n + n^{2})\\
&= &(-1)^{n}\cdot(\frac{1}{2}n^{2} + \frac{1}{2}n)\\
&= &(-1)^{n}\frac{1}{2}n(n+1).\\
\end{mathe}
Also gilt \eqcref{eq:1:\beweislabel}.
Also gilt $\Phi(n)$.
\end{kompaktenum}
Also gilt $\forall{n\in\ntrlpos:~}\Phi(n)$.
\end{proof}
\end{einzug}
Für die Summe $\sum_{i=3}^{n}(-1)^{i}i^{2}$
ist der Ausdruck lediglich
\begin{mathe}[mc]{rcl}
\sum_{i=3}^{n}(-1)^{i}i^{2}
&= &\sum_{i=1}^{n}(-1)^{i}i^{2}-(-1)^{1}\cdot 1-(-1)^{2}2^{2}\\
&= &(-1)^{n}\frac{1}{2}n(n+1)-3\\
\end{mathe}
für alle $n\geq 3$.
Sollten wir dies per Induktion beweisen wollen,
brauchen wir lediglich im o.\,s. Beweis
den \textbf{Induktionsanfang} auf $n=3$ zu ändern.
Der Rest bleibt erhalten.
\begin{rem}
Induktion hat mit Deduzieren (»Ableiten«) nichts zu tun.
Induktion ist nur ein Werkzeug, um Aussagen zu \emph{verifizieren}.
Sie hilft uns überhaupt nicht, um \emph{auf die Behauptungen zu kommen}.
In diesem konkreten Falle wurde Vorarbeit geleistet
und \emph{direkt} argumentiert,
um auf den Ausdruck in \eqcref{eq:1:\beweislabel} zu kommen.
In dieser Vorarbeit steckt die eigentliche mathematische Arbeit
und dies bedarf etwas Kreativität, Intuition, usw.
Häufig reicht diese Vorarbeit aber nur,
um auf eine sinnvolle Behauptung zu kommen,
und zum Schluss runden wir dies mit Induktion ab,
um formal die behauptete Aussage zu bestätigen.
Das ist die eigentliche Rolle von Induktion als Beweismittel.
\end{rem}
%% SKA 4-8
\let\altsectionname\sectionname
@ -3150,7 +3543,56 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:8}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\uwave{{\bfseries Kurzes Argument:}}\\
Wenn jede Farbe jeweils auf maximal $1$ Karte vorkommt,
gibt es $\leq 4\cdot 1=4$ Karten.
Aber $5$ Karten wurden gewählt.
\uwave{{\bfseries Ausführliches Argument:}}\\
Seien
${X:=\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}}$
die Menge der Farben und
${Y:=\{1,2,3,4,5\}}$
die Indizes der Karten.
Sei ${f:X\to\Pot(Y)}$ die Funktion,
die der Wahl entspricht, d.\,h.
\begin{mathe}[mc]{rcl}
f(x) &= &\{y\in Y\mid\text{Karte $y$ hat Farbe $x$}\}\\
\end{mathe}
für alle Farben $x\in X$.
Nun, jede Karte, $y\in Y$, hat eine Farbe, sodass $y\in f(x)$ für ein $x\in X$.
Also $Y\subseteq\bigcup_{x\in X}f(x)$.
Und per Definition $f(x)\subseteq Y$ für alle $x\in X$.
Darum $\bigcup_{x\in X}f(x)\subseteq Y$.
Also
\begin{mathe}[mc]{rcl}
Y &= &\bigcup_{x\in X}f(x)\\
\end{mathe}
Andererseits sind die Mengen $(f(x))_{x\in X}$ paarweise disjunkt,
da jede Karte höchstens eine Farbe hat.
Also ist $(f(x))_{x\in X}$ eine \emph{Partition} von $Y$.
Darum
\begin{mathe}[mc]{ll}
&|Y| = |\bigcup_{x\in X}f(x)|
= \sum_{x\in X}|f(x)|
\leq |X|\cdot\max_{x\in X}|f(x)|\\
\Longrightarrow
&\max_{x\in X}|f(x)| \geq |Y|/|X| = 5/4 > 1\\
\Longrightarrow
&\exists{x\in X:~}|f(x)|>1\\
\Longrightarrow
&\exists{x\in X:~}|f(x)|\geq 2\\
\end{mathe}
Nach der Definition von $f$ heißt dies,
es gibt eine Farbe, $x\in\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$,
so dass mindestens $2$ der gezogenen Karten die Farbe $x$ haben.
%% SKA 4-9
\let\altsectionname\sectionname
@ -3159,7 +3601,58 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:9}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\uwave{{\bfseries Kurzes Argument:}}\\
Wenn jeder Kalendartag jeweils von maximal $17$ Studierenden gefeiert wird,
gibt es $\leq 366\cdot 17=6222$ Studierende.
Aber es gibt $\geq 7000$ Studierende.
\uwave{{\bfseries Ausführliches Argument:}}\\
Seien
${X=\{\text{1.~Jan},\,\text{2.~Jan},\,\ldots,\,\text{31.~Dez}\}}$
die Menge der Kalendartage
und
${Y=\{x\mid x\,\text{ein/e Studierende/r an der Uni Leipzig}\}}$.
Sei ${f:X\to\Pot(Y)}$ die Funktion,
die der Wahl entspricht, d.\,h.
\begin{mathe}[mc]{rcl}
f(x) &= &\{y\in Y\mid\text{Studierende/r $y$ hat am Tag $x$ Geburtstag}\}\\
\end{mathe}
für alle Kalendartage $x\in X$.
Nun, jede/r Studierende/r, $y\in Y$, hat einen Geburtstag,
sodass $y\in f(x)$ für ein $x\in X$.
Also $Y\subseteq\bigcup_{x\in X}f(x)$.
Und per Definition $f(x)\subseteq Y$ für alle $x\in X$.
Darum $\bigcup_{x\in X}f(x)\subseteq Y$.
Also
\begin{mathe}[mc]{rcl}
Y &= &\bigcup_{x\in X}f(x)\\
\end{mathe}
Andererseits sind die Mengen $(f(x))_{x\in X}$ paarweise disjunkt,
da jede/r Studierende/r höchstens einen Geburtstag hat.
Also ist $(f(x))_{x\in X}$ eine \emph{Partition} von $Y$.
Darum
\begin{mathe}[mc]{ll}
&|Y| = |\bigcup_{x\in X}f(x)|
= \sum_{x\in X}|f(x)|
\leq |X|\cdot\max_{x\in X}|f(x)|\\
\Longrightarrow
&\max_{x\in X}|f(x)| \geq |Y|/|X| \geq 7000/366 > 19\\
\Longrightarrow
&\exists{x\in X:~}|f(x)|>19\\
\Longrightarrow
&\exists{x\in X:~}|f(x)|\geq 20\\
\end{mathe}
Nach der Definition von $f$ heißt dies,
es gibt einen Kalendartag, ${x\in\{\text{1.~Jan},\,\text{2.~Jan},\,\ldots,\,\text{31.~Dez}\}}$,
so dass mindestens $20$ Studierende $x$ als Geburtstag feiern.
Insbesondere gibt es $18$ Menschen, die den gleichen Geburtstag feiern.
%% SKA 4-10
\let\altsectionname\sectionname
@ -3168,7 +3661,142 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:10}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
\begin{claim}
\makelabel{claim:main:ska:4:ex:10}
Bezeichne mit $\Phi(n)$ die Aussage
\begin{kompaktitem}[\rtab][\rtab]
\item
Für alle endlichen Mengen, $E_{1},E_{2},\ldots,E_{n}$,
gilt $|\prod_{i=1}^{n}E_{i}|=\prod_{i=1}^{n}|E_{i}|$.
\end{kompaktitem}
Dann gilt $\forall{n\in\ntrlpos:~}\Phi(n)$.
\end{claim}
\begin{einzug}[\rtab][\rtab]
\begin{proof}
Wir zeigen \Cref{\beweislabel} per Induktion.
Als Induktionsanfang widmen wir uns den Fällen $n\leq 2$.
\begin{kompaktenum}[\rtab][\rtab]
\item[\uwave{{\bfseries Induktionsanfang:}}]
Sei $n=1$. Dann für alle Mengen, $E_{1}$
\begin{mathe}[mc]{rcccl}
|\prod_{i=1}^{1}E_{i}|
&= &|E_{1}|
&= &\prod_{i=1}^{1}|E_{i}|\\
\end{mathe}
Also gilt $\Phi(1)$.
\item[]
Sei $n=2$. Dann gilt für alle endlichen Mengen $E_{1},E_{2}$
\begin{mathe}[mc]{rcccccl}
|\prod_{i=1}^{2}E_{i}|
&= &|E_{1}\times E_{2}|
&= &|E_{1}|\cdot|E_{2}|
&= &\prod_{i=1}^{2}|E_{i}|.\\
\end{mathe}
(Dieses Resultat haben wir in \Cref{lemm:1:ska:4:ex:10} ausgelagert.)\\
Also gilt $\Phi(2)$.
\item[\uwave{{\bfseries Induktionsvoraussetzung:}}]
Sei $n>2$.
Angenommen, $\Phi(k)$ gilt für alle $k<n$.
\item[\uwave{{\bfseries Induktionsschritt:}}]
Seien $E_{1},E_{2},\ldots,E_{n}$ beliebige endliche Mengen.
\textbf{Zu zeigen:} $|\prod_{i=1}^{n}E_{i}|=\prod_{i=1}^{n}|E_{i}|$ gilt.\\
Es gilt
\begin{mathe}[mc]{rcl}
|\prod_{i=1}^{n}E_{i}|
&= &|\prod_{i=1}^{n-1}E_{i}\times E_{n}|\\
&= &|\prod_{i=1}^{n-1}E_{i}|\cdot|E_{n}|\\
&&\text{da $\Phi(2)$ gilt}\\
&= &\prod_{i=1}^{n-1}|E_{i}|\cdot|E_{n}|\\
&&\text{wegen der IV}\\
&= &\prod_{i=1}^{n}|E_{i}|.\\
\end{mathe}
Also gilt $\Phi(n)$.
\end{kompaktenum}
Also gilt $\forall{n\in\ntrlpos:~}\Phi(n)$.
\end{proof}
\end{einzug}
Wir müssen noch den Fall für $2$ Mengen beweisen.
\begin{lemm}
\makelabel{lemm:1:ska:4:ex:10}
Seien $X$, $Y$ beliebige \uline{endliche} Mengen.
Dann $|X\times Y|=|X|\cdot |Y|$.
\end{lemm}
\begin{einzug}[\rtab][\rtab]
\begin{proof}
Wir beweisen dies per Induktion über $|Y|$ durchführen.
\begin{kompaktenum}[\rtab][\rtab]
\item[\uwave{{\bfseries Induktionsanfang:}}]
Sei $Y$ eine endliche Menge mit $|Y|=0$.
Also $Y=\leer$.
Darum
\begin{mathe}[mc]{rcccccccccl}
|X\times Y|
&= &|X\times\leer|
&= &|\leer|
&= &0
&= &|X|\cdot 0
&= &|X|\cdot|Y|.\\
\end{mathe}
\item[]
Sei $Y$ eine $1$-elementige Menge.
Dann $Y=\{y\}$ für ein Objekt, $y$.
Es ist einfach zu sehen, dass
${x\in X\mapsto (x,y)\in X\times Y}$
eine Bijektion ist.
Folglich sind $X$ und $X\times Y$ gleichmächtig.
D.\,h. $|X\times Y|=|X|=|X|\cdot 1=|X|\cdot|Y|$.
\item[\uwave{{\bfseries Induktionsvoraussetzung:}}]
Sei $n>1$.
Angenommen, $|X\times Y'|=|X|\cdot |Y'|$
für alle $k$-elementigen Mengen, $Y'$
und für alle $k<n$.
\item[\uwave{{\bfseries Induktionsschritt:}}]
Sei $Y$ eine beliebige $n$-elementige Menge.\\
\textbf{Zu zeigen:} $|X\times Y|=|X|\times|Y|$ gilt.\\
Da $n>0$, können wir ein beliebiges $y_{0}\in Y$ fixieren.\\
Setze $Y':=Y\ohne\{y_{0}\}$.
Da $Y'$ $n-1$-elementig ist, gilt per Induktionsvoraussetzung
$|X\times Y'|=|X|\cdot|Y'|=|X|\cdot(n-1)$.\\
Wegen Disjunktheit von $Y'$ und $\{y_{0}\}$,
sind $X\times Y'$ und $X\times\{y_{0}\}$ ebenfalls disjunkt.
Es folgt
\begin{mathe}[mc]{rcl}
|X\times Y|
&= &|X\times (Y'\cup\{y_{0}\}|\\
&= &|(X\times Y')\cup (X\times\{y_{0}\})|\\
&= &|X\times Y'| + |X\times\{y_{0}\}|\\
&&\text{wegen Disjunktheit}\\
&= &|X|\cdot(n-1) + |X|\cdot 1\\
&&\text{wegen des Falls für $1$-elementigen Mengen}\\
&= &|X|\cdot n\\
&&\text{wegen der rekursiven Definition von Multiplikation}\\
&= &|X|\cdot |Y|,\\
\end{mathe}
\end{kompaktenum}
Darum gilt $|X\times Y|=|X|\cdot|Y|$ für alle Mengen $X,Y$.
\end{proof}
\end{einzug}
%% SKA 4-11
\let\altsectionname\sectionname
@ -3177,7 +3805,22 @@ aber dies ist streng genommen nicht die ganze Wahrheit.
\label{ska:4:ex:11}
\let\sectionname\altsectionname
({\itshape Unter Arbeit})
In dem Induktionsschritt
\begin{quote}
Jetzt können wir aber auch einen der Goldfische rausnehmen
und haben wieder ein Aquarium mit $n$ Fischen \uline{und mindestens einem} Golfisch.
\end{quote}
Dieser Teil des Arguments voraus, dass unter der zweiten Auswahl von $n$ Fischen
ein Goldfisch vorhanden ist.
In \emph{dieser} Auswahl kommt aber der zuerst rausgezogene Fisch vor
und dieser war kein Goldfisch.
Darum muss ein Goldfisch unter den $n-1$ anderen Fischen.
Aber das ist nur möglich, wenn $n-1\geq 1$,
also wenn $n\geq 2$.
Das heißt, das Induktionsargument überspringt den Fall $n=2$!
\setcounternach{part}{3}
\part{Quizzes}