master > master: ÜB7

This commit is contained in:
RD 2020-12-16 00:48:06 +01:00
parent 5e8068a589
commit 58b9a4f581
2 changed files with 679 additions and 11 deletions

Binary file not shown.

View File

@ -57,6 +57,8 @@
%% | %% |
%% — body/uebung/ueb6.tex; %% — body/uebung/ueb6.tex;
%% | %% |
%% — body/uebung/ueb7.tex;
%% |
%% — body/ska/ska4.tex; %% — body/ska/ska4.tex;
%% | %% |
%% — body/ska/ska5.tex; %% — body/ska/ska5.tex;
@ -72,6 +74,8 @@
%% — body/quizzes/quiz4.tex; %% — body/quizzes/quiz4.tex;
%% | %% |
%% — body/quizzes/quiz5.tex; %% — body/quizzes/quiz5.tex;
%% |
%% — body/quizzes/quiz6.tex;
%% | %% |
%% — back/index.tex; %% — back/index.tex;
%% | %% |
@ -1334,6 +1338,7 @@
\def\vectorspacespan{\mathop{\text{\upshape Lin}}} \def\vectorspacespan{\mathop{\text{\upshape Lin}}}
\def\dim{\mathop{\text{\upshape dim}}} \def\dim{\mathop{\text{\upshape dim}}}
\def\rank{\mathop{\text{\upshape Rank}}}
\def\onematrix{\text{\upshape\bfseries I}} \def\onematrix{\text{\upshape\bfseries I}}
\def\zeromatrix{\text{\upshape\bfseries 0}} \def\zeromatrix{\text{\upshape\bfseries 0}}
\def\zerovector{\text{\upshape\bfseries 0}} \def\zerovector{\text{\upshape\bfseries 0}}
@ -1341,6 +1346,7 @@
\def\graph{\mathop{\text{\textup Gph}}} \def\graph{\mathop{\text{\textup Gph}}}
\def\domain{\mathop{\text{\textup dom}}} \def\domain{\mathop{\text{\textup dom}}}
\def\range{\mathop{\text{\textup ran}}} \def\range{\mathop{\text{\textup ran}}}
\def\functionspace{\mathop{\text{\textup Abb}}}
\def\id{\text{\textup id}} \def\id{\text{\textup id}}
\def\modfn{\mathop{\text{\textup mod}}} \def\modfn{\mathop{\text{\textup mod}}}
\def\divides{\mathbin{\mid}} \def\divides{\mathbin{\mid}}
@ -4508,8 +4514,12 @@ Um \Cref{satz:1:ueb:6:ex:3} zu beweisen, brauchen wir zunächst folgendes Zwisch
für alle $(a,b),(a',b'),(a'',b'')\in F$, ist dies erfüllt. für alle $(a,b),(a',b'),(a'',b'')\in F$, ist dies erfüllt.
Anhand der o.\,s. Erkenntnisse darüber, welchen Axiomen $(F,+,\cdot)$ bereits genügt, Darum erfüllt $(F,+,\cdot)$ jedes Axiom eines Körpers,
erhalten wir, dass $(F,+,\cdot)$ genau dann ein Körper, wenn in $(F,\cdot)$ jedes Element ein Inverses hat. evtl. bis auf das Axiom für multiplikative Inverse.
Darum gilt:
$(F,+,\cdot)$ bildet einen Körper
$\Leftrightarrow$
jedes Element in $F\ohne\{0_{F}\}$ hat ein multiplikatives Inverses.
\end{proof} \end{proof}
\end{einzug} \end{einzug}
@ -4534,7 +4544,7 @@ Jetzt können wir uns dem Beweis von \Cref{satz:1:ueb:6:ex:3} widmen
} }
\herRichtung \herRichtung
Angenommen, $a^{2}+b^{2}\neq 0$ für alle $(a,b)\in F\ohne\{0_{F}\}$. Angenommen, $a^{2}+b^{2}\neq 0$ für alle $(a,b)\in F\ohne\{0_{F}\}$.\\
Sei $(a,b)\in F\ohne\{0_{F}\}$ beliebig. Sei $(a,b)\in F\ohne\{0_{F}\}$ beliebig.
\textbf{Zu zeigen:} $(a,b)$ sei innerhalb $F$ invertierbar.\\ \textbf{Zu zeigen:} $(a,b)$ sei innerhalb $F$ invertierbar.\\
Per Annahme gilt nun $r:=a^{2}+b^{2}\neq 0$ und somit ist $r$ innerhalb $K$ invertierbar. Per Annahme gilt nun $r:=a^{2}+b^{2}\neq 0$ und somit ist $r$ innerhalb $K$ invertierbar.
@ -4579,10 +4589,601 @@ Jetzt können wir uns dem Beweis von \Cref{satz:1:ueb:6:ex:3} widmen
woraus sich $a^{2}+b^{2}\neq 0$ ergibt. woraus sich $a^{2}+b^{2}\neq 0$ ergibt.
\end{proof} \end{proof}
\setcounternach{part}{2} %% ********************************************************************************
\part{Selbstkontrollenaufgaben} %% FILE: body/uebung/ueb7.tex
%% ********************************************************************************
\def\chaptername{SKA Blatt} \setcounternach{chapter}{7}
\chapter[Woche 7]{Woche 7}
\label{ueb:7}
\textbf{ACHTUNG.}
Diese Lösungen dienen \emph{nicht} als Musterlösungen sondern eher als Referenz.
Hier wird eingehender gearbeitet, als generell verlangt wird.
Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche vergleichen kann.
%% AUFGABE 7-1
\let\altsectionname\sectionname
\def\sectionname{Aufgabe}
\section[Aufgabe 1]{}
\label{ueb:7:ex:1}
\let\sectionname\altsectionname
Betrachte den Vektorraum $V:=\functionspace(\reell,\reell)$ über dem Körper $\reell$.
Wir bezeichnen mit $0(\cdot)$ die konstante Funktion, die überall gleich $0$ ist.
Dies ist zufälligerweise auch das Nullelement von $V$.
\begin{enumerate}{\bfseries (a)}
%% AUFGABE 7-1a
\item
\begin{claim*}
Seien $a,b\in\reell$ beliebig.
Dann \fbox{ist} $U_{1}:=\{f\in V\mid f(a)=f(b)\}$ ein Untervektorraum (»linearer Unterraum«).
\end{claim*}
\begin{proof}
Wir gehen die Axiome aus der Definition durch:
\begin{kompaktitem}[\rtab][\rtab]
\item[{\bfseries (NL)}]
Offensichtlich gilt $0(\cdot)\in U_{1}$, da diese Funktion überall und damit insbesondere auf $\{a,b\}$ gleich ist.
Also, $U_{1}\neq\leer$.
\item[{\bfseries (LK)}]
Seien $\alpha,\beta\in\reell$ und $f,g\in U_{1}$.
\textbf{Zu zeigen:} $\alpha\cdot f+\beta\cdot g\in U_{1}$\\
Es gilt
\begin{mathe}[mc]{rcl}
(\alpha\cdot f+\beta\cdot g)(a)
&= &\alpha\cdot f(a)+\beta\cdot g(a)\\
&\overset{(\ast)}{=}
&\alpha\cdot f(b)+\beta\cdot g(b)\\
&= &(\alpha\cdot f+\beta\cdot g)(b)\\
\end{mathe}
Hier gilt $(\ast)$, weil $f,g\in U_{1}$.\\
Darum gilt per Konstruktion, dass $\alpha\cdot f+\beta\cdot g\in U_{1}$.
\end{kompaktitem}
Darum bildet $U_{1}$ einen Untervektorraum.
\end{proof}
%% AUFGABE 7-1b
\item
\begin{claim*}
Seien $a,b\in\reell$ beliebig.
Dann ist $U_{2}:=\{f\in V\mid f(a)=f(b)=1\}$ genau dann ein Untervektorraum, wenn $a=b$.
\end{claim*}
\begin{proof}
\herRichtung
Falls $a=b$,
dann gilt offensichtlich $f(a)=f(b)$ für alle $f\in V$,
sodass $U_{2}=V$,
woraus sich trivialerweise ergibt,
dass $U_{2}$ ein Untervektorraum ist.
\hinRichtung
Offensichtlich ist der Nullvektor, $0(\cdot)$, nicht in $U_{2}$.
Darum kann $U_{2}$ kein Untervektorraum sein.
(Siehe \cite[Lemma~5.1.3]{sinn2020}.)
\end{proof}
Alternativ für die $\Rightarrow$-Richtung kann man folgendermaßen argumentieren:
die konstante Funktion $1(\cdot)$ liegt in $U_{2}$,
aber $0\cdot 1(\cdot)\notin U_{2}$,
sodass $U_{2}$ nicht unter Skalarmultiplikation stabil ist.
%% AUFGABE 7-1c
\item
\begin{claim*}
Die Teilmenge $U_{3}:=\{f\in V\mid f\,\text{injektiv}\}$ \fbox{ist kein Untervektorraum} von $V$.
\end{claim*}
\begin{proof}
Offensichtlich ist der Nullvektor, $0(\cdot)$, nicht in $U_{3}$,
weil diese konstante Funktion nicht injektiv ist.
Darum kann $U_{3}$ kein Untervektorraum sein.
(Siehe \cite[Lemma~5.1.3]{sinn2020}.)
\end{proof}
%% AUFGABE 7-1d
\item
\begin{claim*}
Die Teilmenge $U_{4}:=\{f\in V\mid f\,\text{surjektiv}\}$ \fbox{ist kein Untervektorraum} von $V$.
\end{claim*}
\begin{proof}
Offensichtlich ist der Nullvektor, $0(\cdot)$, nicht in $U_{4}$,
weil die konstante Funktion nicht surjektiv ist.
Darum kann $U_{4}$ kein Untervektorraum sein.
(Siehe \cite[Lemma~5.1.3]{sinn2020}.)
\end{proof}
\end{enumerate}
%% AUFGABE 7-2
\let\altsectionname\sectionname
\def\sectionname{Aufgabe}
\section[Aufgabe 2]{}
\label{ueb:7:ex:2}
\let\sectionname\altsectionname
\begin{enumerate}{\bfseries (a)}
%% AUFGABE 7-2a
\item
\begin{claim*}
Sei $K=\rtnl$. Dann sind
${\mathbf{v}_{1}=\begin{svector}1\\2\\2\\\end{svector}}$,
${\mathbf{v}_{2}=\begin{svector}3\\2\\1\\\end{svector}}$, und
${\mathbf{v}_{3}=\begin{svector}2\\1\\-1\\\end{svector}}$
über $K$ \fbox{linear unabhängig}.
\end{claim*}
\begin{proof}
Es reicht aus, den (Zeilen)rang der Matrix
\begin{mathe}[mc]{rcl}
A &:= &\begin{matrix}{ccc}
1 &3 &2\\
2 &2 &1\\
2 &1 &-1\\
\end{matrix}
\end{mathe}
zu untersuchen. Wir berechnen
\begin{algorithm}[\rtab][\rtab]
Reduktion der Matrix, $A$, mittels des Gaußverfahrens:\\
Zeilentransformationen
${Z_{2} \leftsquigarrow 3\cdot Z_{1}-Z_{2}}$
und
${Z_{3} \leftsquigarrow 2\cdot Z_{1}-Z_{3}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccc}
1 &2 &2\\
0 &4 &5\\
0 &3 &5\\
\end{matrix}\\
\end{mathe}
Zeilentransformation
${Z_{3} \leftsquigarrow 4\cdot Z_{3}-3\cdot Z_{2}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccc}
1 &2 &2\\
0 &4 &5\\
0 &0 &5\\
\end{matrix}\\
\end{mathe}
\end{algorithm}
Der Zeilenstufenform entnimmt man, $\rank(A)=3$.
Darum sind alle $3$ Vektoren,
$\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\}$,
linear unabhängig.
\end{proof}
%% AUFGABE 7-2b
\item
\begin{claim*}
Sei $K=\mathbb{F}_{5}$. Dann sind
${\mathbf{v}_{1}=\begin{svector}1\\2\\2\\\end{svector}}$,
${\mathbf{v}_{2}=\begin{svector}3\\2\\1\\\end{svector}}$, und
${\mathbf{v}_{3}=\begin{svector}2\\1\\4\\\end{svector}}$
über $K$ \fbox{nicht linear unabhängig}.
\end{claim*}
\begin{proof}
Es reicht aus, den (Zeilen)rang der Matrix
\begin{mathe}[mc]{rcl}
A &:= &\begin{matrix}{ccc}
1 &3 &2\\
2 &2 &1\\
2 &1 &4\\
\end{matrix}
\end{mathe}
zu untersuchen. Wir berechnen
\begin{algorithm}[\rtab][\rtab]
Reduktion der Matrix, $A$, mittels des Gaußverfahrens:\footnote{
Wir achten hier besonders darauf,
niemals mit einem Vielfach von $5$ zu multiplizieren!
}\\
Zeilentransformationen
${Z_{2} \leftsquigarrow 3\cdot Z_{1}-Z_{2}}$
und
${Z_{3} \leftsquigarrow 2\cdot Z_{1}-Z_{3}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccl}
1 &2 &2\\
0 &4 &5(=0)\\
0 &3 &0\\
\end{matrix}\\
\end{mathe}
Zeilentransformation
${Z_{3} \leftsquigarrow 4\cdot Z_{3}-3\cdot Z_{2}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccc}
1 &2 &2\\
0 &4 &0\\
0 &0 &0\\
\end{matrix}\\
\end{mathe}
\end{algorithm}
Der Zeilenstufenform entnimmt man, $\rank(A)=2$.
Darum sind nur $2$ der Vektoren, und zwar
$\{\mathbf{v}_{1},\mathbf{v}_{2}\}$,
linear unabhängig.
Der Vektor, $\mathbf{v}_{3}$, hingegen, hängt linear von diesen ab.
\end{proof}
%% AUFGABE 7-2c
\item
\begin{claim*}
Sei $K=\kmplx$. Dann sind
${\mathbf{v}_{1}=\begin{svector}1\\\imageinh\\0\\\end{svector}}$,
${\mathbf{v}_{2}=\begin{svector}1+\imageinh\\-\imageinh\\1-2\imageinh\\\end{svector}}$, und
${\mathbf{v}_{3}=\begin{svector}\imageinh\\1-\imageinh\\2-\imageinh\\\end{svector}}$
über $K$ \fbox{nicht linear unabhängig}.
\end{claim*}
\begin{proof}
Es reicht aus, den (Zeilen)rang der Matrix
\begin{mathe}[mc]{rcl}
A &:= &\begin{matrix}{ccc}
1 &1+\imageinh &\imageinh\\
\imageinh &-\imageinh &1-\imageinh\\
0 &1-2\imageinh &2-\imageinh\\
\end{matrix}
\end{mathe}
zu untersuchen. Wir berechnen
\begin{algorithm}[\rtab][\rtab]
Reduktion der Matrix, $A$, mittels des Gaußverfahrens:\\
Zeilentransformation
${Z_{2} \leftsquigarrow \imageinh\cdot Z_{2}+Z_{1}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccc}
1 &1+\imageinh &\imageinh\\
0 &2+\imageinh &1+2\imageinh\\
0 &1-2\imageinh &2-\imageinh\\
\end{matrix}\\
\end{mathe}
Zeilentransformation
${Z_{3} \leftsquigarrow \imageinh\cdot Z_{3}-Z_{2}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{matrix}{ccc}
1 &1+\imageinh &\imageinh\\
0 &2+\imageinh &1+2\imageinh\\
0 &0 &0\\
\end{matrix}\\
\end{mathe}
\end{algorithm}
Der Zeilenstufenform entnimmt man, $\rank(A)=2$.
Darum sind nur $2$ der Vektoren, und zwar
$\{\mathbf{v}_{1},\mathbf{v}_{2}\}$,
linear unabhängig.
Der Vektor, $\mathbf{v}_{3}$, hingegen, hängt linear von diesen ab.
\end{proof}
Wir betrachten nun dieselbe Aufgabe, nur über $\reell$ statt $\kmplx$:
\begin{claim*}
Sei $K=\reell$. Dann sind
${\mathbf{v}_{1}=\begin{svector}1\\0\\0\\1\\0\\0\\\end{svector}}$,
${\mathbf{v}_{2}=\begin{svector}1\\1\\0\\-1\\1\\-2\\\end{svector}}$, und
${\mathbf{v}_{3}=\begin{svector}0\\1\\1\\-1\\2\\-1\\\end{svector}}$
über $K$ \fbox{linear unabhängig}.
\end{claim*}
\begin{proof}
Es reicht aus, den (Zeilen)rang der Matrix
\begin{mathe}[mc]{rcl}
A &:= &\begin{smatrix}
1&1&0\\
0&1&1\\
0&0&1\\
1&-1&-1\\
0&1&2\\
0&-2&-1\\
\end{smatrix}
\end{mathe}
zu untersuchen. Wir berechnen
\begin{algorithm}[\rtab][\rtab]
Reduktion der Matrix, $A$, mittels des Gaußverfahrens:\\
Zeilentransformation
${Z_{4} \leftsquigarrow \imageinh\cdot Z_{1}-Z_{4}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{smatrix}
1&1&0\\
0&1&1\\
0&0&1\\
0&2&1\\
0&1&2\\
0&-2&-1\\
\end{smatrix}\\
\end{mathe}
Zeilentransformation
${Z_{3} \leftrightsquigarrow Z_{6}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{smatrix}
1&1&0\\
0&1&1\\
0&-2&-1\\
0&2&1\\
0&1&2\\
0&0&1\\
\end{smatrix}\\
\end{mathe}
Zeilentransformationen
${Z_{3} \leftrightsquigarrow 2\cdot Z_{2}+Z_{3}}$,
${Z_{4} \leftrightsquigarrow 2\cdot Z_{2}-Z_{4}}$,
und
${Z_{5} \leftrightsquigarrow -1\cdot Z_{2}+Z_{5}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{smatrix}
1&1&0\\
0&1&1\\
0&0&1\\
0&0&1\\
0&0&1\\
0&0&1\\
\end{smatrix}\\
\end{mathe}
Zeilentransformationen
${Z_{4} \leftrightsquigarrow Z_{4}-Z_{3}}$,
${Z_{5} \leftrightsquigarrow Z_{5}-Z_{3}}$,
und
${Z_{6} \leftrightsquigarrow Z_{6}-Z_{3}}$
anwenden:
\begin{mathe}[mc]{c}
\begin{smatrix}
1&1&0\\
0&1&1\\
0&0&1\\
0&0&0\\
0&0&0\\
0&0&0\\
\end{smatrix}\\
\end{mathe}
\end{algorithm}
Der Zeilenstufenform entnimmt man, $\rank(A)=3$.
Darum sind alle $3$ Vektoren,
$\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\}$,
linear unabhängig.
\end{proof}
\end{enumerate}
%% AUFGABE 7-3
\let\altsectionname\sectionname
\def\sectionname{Aufgabe}
\section[Aufgabe 3]{}
\label{ueb:7:ex:3}
\let\sectionname\altsectionname
Seien $K$ ein Körper und $V$ ein Vektorraum über $K$.
Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
\begin{enumerate}{\bfseries (a)}
%% AUFGABE 7-3a
\item
\begin{claim*}
Die folgende Aussage ist \fbox{gültig}:\\
Angenommen es existieren linear unabhängige Vektoren,
$\mathbf{w}_{1},\mathbf{w}_{2},\ldots,\mathbf{w}_{n}\in V$
und Skalare $c_{i}\in K\ohne\{0\}$,
so dass $\mathbf{v}_{i}=c_{i}\mathbf{w}_{i}$
für alle $i\in\{1,2,\ldots,n\}$.
Dann bilden
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
ein linear unabhängiges System.
\end{claim*}
\begin{proof}
Wir zeigen dies direkt.
Sei $\alpha_{i}\in K$ für $i\in\{1,2,\ldots,n\}$
und so dass
mit $\sum_{i=1}^{n}\alpha_{i}\cdot\mathbf{v}_{i}=\zerovector$.\\
\textbf{Zu zeigen:} $\forall{i\in\{1,2,\ldots,n\}:~}\alpha_{i}=0$.\\
Es gilt
\begin{longmathe}[mc]{RCL}
\sum_{i=1}^{n}\alpha_{i}\cdot\mathbf{v}_{i}=\zerovector
&\Longleftrightarrow
&\sum_{i=1}^{n}\alpha_{i}\cdot(c_{i}\mathbf{w}_{i})=\zerovector\\
&\Longleftrightarrow
&\sum_{i=1}^{n}(\alpha_{i}c_{i})\cdot\mathbf{w}_{i}=\zerovector\\
&\Longrightarrow
&\forall{i\in\{1,2,\ldots,n\}:~}\alpha_{i}c_{i}=0,\\
&&\text{da $\mathbf{w}_{1},\mathbf{w}_{2},\ldots,\mathbf{w}_{n}$ linear unabhängig}\\
&\Longleftrightarrow
&\forall{i\in\{1,2,\ldots,n\}:~}\alpha_{i}=0\,\text{oder}\,c_{i}=0,
\quad\text{da $K$ ein Körper ist}\\
&\Longleftrightarrow
&\forall{i\in\{1,2,\ldots,n\}:~}\alpha_{i}=0,
\quad\text{da $c_{i}\neq 0$ für alle $i$}.\\
\end{longmathe}
Darum ist gilt $\alpha_{i}=0$ für alle $i\in\{1,2,\ldots,n\}$.
Folglich sind
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
linear unabhängig.
\end{proof}
%% AUFGABE 7-3b
\item
\begin{claim*}
Die folgende Aussage ist \fbox{ungültig}:\\
Angenommen,
$\mathbf{v}_{n}\notin\vectorspacespan(\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n-1})$.
Dann ist
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
linear unabhängig.
\end{claim*}
\begin{proof}
Folgendes ist ein Gegenbeispiel.
Sei $n\geq 3$ beliebig.
Sei $V=K^{2}$
und betrachte die Vektoren
\begin{mathe}[mc]{rclqrcl}
\mathbf{v}_{1}=\mathbf{v}_{2}=\ldots=\mathbf{v}_{n-1} &:= &\begin{svector}1\\0\\\end{svector}
&\mathbf{v}_{n} &:= &\begin{svector}0\\1\\\end{svector}\\
\end{mathe}
Dann gilt $\mathbf{v}_{n}\notin\vectorspacespan(\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n-1})$,
weil $\vectorspacespan(\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n-1})
=\vectorspacespan(\mathbf{v}_{1})
=\{\begin{svector}t\\0\\\end{svector}\mid t\in K\}\notni \begin{svector}0\\1\\\end{svector}$.
Andererseits sind die $n-1\geq 2$ Vektoren,
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
per Wahl nicht linear unabhängig (weil die alle gleich sind).
Also sind die Vektoren,
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
ebenfalls nicht linear unabhängig.
Darum gilt die behauptete Implikation nicht im Allgemeinen.
\end{proof}
%% AUFGABE 7-3c
\item
\begin{claim*}
Die folgende Aussage ist \fbox{ungültig}:\\
Das System
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
ist genau dann linear unabhängig,
wenn jedes echte Teilsystem linear unabhängig ist.
\end{claim*}
\begin{proof}
Der $\Rightarrow$-Teil ist offensichtlich wahr.
Es kann also nur die $\Leftarrow$-Richtung schiefgehen.
Wir betrachten ein Gegenbeispiel mit $n=3$ Vektoren.
Sei $V=K^{2}$ und betrachte
\begin{mathe}[mc]{rclqrclqrcl}
\mathbf{v}_{1} &:= &\begin{svector}0\\1\\\end{svector},
&\mathbf{v}_{2} &:= &\begin{svector}1\\0\\\end{svector},
&\mathbf{v}_{3} &:= &\begin{svector}1\\1\\\end{svector}.\\
\end{mathe}
Es ist einfach zu sehen, dass die echten Teilsysteme
\begin{mathe}[mc]{cccccc}
(\mathbf{v}_{1}),
&(\mathbf{v}_{2}),
&(\mathbf{v}_{3}),
&(\mathbf{v}_{1},\mathbf{v}_{2})
&(\mathbf{v}_{1},\mathbf{v}_{3})
&(\mathbf{v}_{2},\mathbf{v}_{3})\\
\end{mathe}
linear unabhängig sind. Aber (vor allem weil $V$ nur $2$-dimensional ist)
$\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}$
ist nicht linear unabhängig, da
\begin{mathe}[mc]{rcl}
1\cdot\mathbf{v}_{1}
+1\cdot\mathbf{v}_{2}
+-1\cdot\mathbf{v}_{3}
&= &\zerovector.\\
\end{mathe}
Darum ist gilt die behauptete Implikation nicht im Allgemeinen.
\end{proof}
%% AUFGABE 7-3d
\item
\begin{claim*}
Die folgende Aussage ist \fbox{gültig}:\\
Angenommen,
$\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
sei linear unabhängig.
Dann für alle $i\in\{1,2,\ldots,n\}\ohne\{1\}$
und $c\in K$
bilden
$\mathbf{u},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
ein linear unabhängiges System,
wobei ${\mathbf{u}:=\mathbf{v}_{1}+c\mathbf{v}_{i}}$.
\end{claim*}
\begin{proof}
Wir zeigen dies direkt.
Sei $\alpha_{j}\in K$ für $j\in\{1,2,\ldots,n\}$
und so dass
mit $\alpha_{1}\mathbf{u}+\sum_{j=2}^{n}\alpha_{j}\cdot\mathbf{v}_{j}=\zerovector$.\\
\textbf{Zu zeigen:} $\forall{j\in\{1,2,\ldots,n\}:~}\alpha_{j}=0$.\\
Es gilt
\begin{longmathe}[mc]{RCL}
\alpha_{1}\mathbf{u}+\sum_{j=2}^{n}\alpha_{j}\cdot\mathbf{v}_{j}=\zerovector
&\Longleftrightarrow
&\alpha_{1}\mathbf{v}_{1}
+\alpha_{1}c\mathbf{v}_{i}
+\sum_{j=2}^{n}\alpha_{j}\cdot\mathbf{v}_{j}=\zerovector\\
&\Longleftrightarrow
&c\alpha_{1}\mathbf{v}_{i}
+\sum_{j=1}^{n}\alpha_{j}\cdot\mathbf{v}_{j}=\zerovector\\
&\Longleftrightarrow
&\sum_{j=1}^{n}\beta_{j}\mathbf{v}_{j}=\zerovector,\\
&&\text{%
wobei $\beta_{j}=\alpha_{j}$ für $j\in\{1,2,\ldots,n\}\ohne\{i\}$
und $\beta_{i}=c\alpha_{1}+\alpha_{i}$
}\\
&\Longrightarrow
&\forall{j\in\{1,2,\ldots,n\}:~}\beta_{j}=0,\\
&&\text{da $\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$ linear unabhängig}\\
&\Longleftrightarrow
&c\alpha_{1}+\alpha_{i}=0
\,\text{und}\,
\forall{j\in\{1,2,\ldots,n\}\ohne\{i\}:~}\alpha_{j}=0\\
&\Longrightarrow
&c\cdot 0+\alpha_{i}=0
\,\text{und}\,
\forall{j\in\{1,2,\ldots,n\}\ohne\{i\}:~}\alpha_{j}=0\\
&\Longleftrightarrow
&\forall{j\in\{1,2,\ldots,n\}:~}\alpha_{j}=0\\
\end{longmathe}
Darum ist gilt $\alpha_{i}=0$ für alle $i\in\{1,2,\ldots,n\}$.
Folglich sind
$\mathbf{u},\mathbf{v}_{2},\ldots,\mathbf{v}_{n}$
linear unabhängig.
\end{proof}
\end{enumerate}
%% ******************************************************************************** %% ********************************************************************************
%% FILE: body/ska/ska4.tex %% FILE: body/ska/ska4.tex
@ -6643,11 +7244,6 @@ Sind $n,m\in\intgr$ teilerfremd, dann ist $[m]$ innerhalb $\intgr/n\intgr$ inver
Falls $n$ nicht prim ist, muss man sich allerdings bei der Injektivitätsargumentation mehr bemühen. Falls $n$ nicht prim ist, muss man sich allerdings bei der Injektivitätsargumentation mehr bemühen.
Einfacher ist also natürlich die Anwendung von dem Lemma von B\'ezout. Einfacher ist also natürlich die Anwendung von dem Lemma von B\'ezout.
\setcounternach{part}{3}
\part{Quizzes}
\def\chaptername{Quiz}
%% ******************************************************************************** %% ********************************************************************************
%% FILE: body/quizzes/quiz1.tex %% FILE: body/quizzes/quiz1.tex
%% ******************************************************************************** %% ********************************************************************************
@ -6957,6 +7553,78 @@ Wir betrachten die Komposition ${g\circ f:X\to Z}$
Das heißt, $p\divides\begin{svector}2n\\n\\\end{svector}$. Das heißt, $p\divides\begin{svector}2n\\n\\\end{svector}$.
\end{proof} \end{proof}
%% ********************************************************************************
%% FILE: body/quizzes/quiz6.tex
%% ********************************************************************************
\setcounternach{chapter}{6}
\chapter[Woche 6]{Woche 6}
\label{quiz:6}
\begin{enumerate}{\bfseries 1.}
\item
Seien $n\in\ntrlpos$.
Man bezeichne mit $(\intgr/n\intgr)^{\times}$
die Menge der bzgl. Multiplikation modulo $n$
invertierbaren Elemente in $\intgr/n\intgr$.
\begin{claim*}
Für $a\in\intgr$
gilt
$[a]\in(\intgr/n\intgr)^{\times}$
gdw. $\exists{u,v\in\intgr:~}ua+vn=1$
gdw. $\ggT(a,n)=1$
\end{claim*}
\begin{proof}
Es gilt
\begin{mathe}[mc]{rcl}
[a]\in(\intgr/n\intgr)^{\times}
&\Longleftrightarrow
&\exists{u\in\intgr:~}\overbrace{[u]\cdot [a]}^{[u\cdot a]=}=[1]\\
&\Longleftrightarrow &\exists{u\in\intgr:~}u\cdot a\equiv 1\mod n\\
&\Longleftrightarrow &\exists{u\in\intgr:~}\exists{v\in\intgr:~}ua+vn=1\\
&\Longleftrightarrow &\ggT(a,n)=1
\quad\text{(wegen des Lemmas von B\'ezout).}
\end{mathe}
Also gilt
$[a]\in(\intgr/n\intgr)^{\times}$
$\Leftrightarrow$
$\exists{u,v\in\intgr:~}ua+vn=1$
$\Leftrightarrow$
$\ggT(a,n)=1$.
\end{proof}
\item
\begin{claim*}
Sei $n=9$. Dann gilt $(\intgr/n\intgr)^{\times}=\{[1],[2],[4],[5],[7],[8]\}$.
\end{claim*}
\begin{proof}
Da
\hraum
\begin{tabular}[mc]{|L|CCCCCCCCC|}
\hline
\hline
a &0 &1 &2 &3 &4 &5 &6 &7 &8\\
\hline
\ggT(a,n=9) &9 &1 &1 &3 &1 &1 &3 &1 &1\\
\hline
\hline
\end{tabular}
\hraum
gilt der letzten Aufgabe zufolge
$%
(\intgr/n\intgr)^{\times}
=\{[a]\mid a\in\{0,1,2,\ldots,n-1\},\,\ggT(a,n)=1\}
=\{[1],[2],[4],[5],[7],[8]\}%
$.
\end{proof}
\end{enumerate}
%% ******************************************************************************** %% ********************************************************************************
%% FILE: back/index.tex %% FILE: back/index.tex
%% ******************************************************************************** %% ********************************************************************************