master > master: Formattierung
This commit is contained in:
parent
6437264862
commit
7706daac88
Binary file not shown.
@ -5202,9 +5202,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
&x_{1}-x_{2}-2x_{3}+2x_{4}=0
|
||||
&\Longleftrightarrow
|
||||
&\underbrace{
|
||||
\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
\end{smatrix}
|
||||
\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
\end{matrix}
|
||||
}_{=:A_{1}}
|
||||
\mathbf{x}=\zerovector\\
|
||||
\mathbf{x}\in U_{2}
|
||||
@ -5212,9 +5212,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
&x_{1}-x_{2}-x_{3}-x_{4}=0
|
||||
&\Longleftrightarrow
|
||||
&\underbrace{
|
||||
\begin{smatrix}
|
||||
1&-1&-1&-1\\
|
||||
\end{smatrix}
|
||||
\begin{matrix}{cccc}
|
||||
1 &-1 &-1 &-1\\
|
||||
\end{matrix}
|
||||
}_{=:A_{2}}
|
||||
\mathbf{x}=\zerovector\\
|
||||
\mathbf{x}\in U_{1}\cap U_{2}
|
||||
@ -5225,10 +5225,10 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
\end{array}
|
||||
&\Longleftrightarrow
|
||||
&\underbrace{
|
||||
\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
1&-1&-1&-1\\
|
||||
\end{smatrix}
|
||||
\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
1 &-1 &-1 &-1\\
|
||||
\end{matrix}
|
||||
}_{=:A_{3}}
|
||||
\mathbf{x}=\zerovector\\
|
||||
\end{longmathe}
|
||||
@ -5245,9 +5245,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
Zeilenstufenform für $A_{1}$:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
A_{1} &= &\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
\end{smatrix}\\
|
||||
A_{1} &= &\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Darum sind $x_{2}$, $x_{3}$, $x_{4}$ frei und $x_{1}$ wird durch diese bestimmt.
|
||||
@ -5281,12 +5281,12 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
U_{1}
|
||||
&= &\{\mathbf{x}\in V\mid A_{1}\mathbf{x}=\zerovector\}
|
||||
&= &\vectorspacespan\underbrace{
|
||||
\{
|
||||
\left\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}2\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}-2\\0\\0\\1\\\end{svector}
|
||||
\}
|
||||
}_{=:B}\\
|
||||
\right\}
|
||||
}_{=:B_{1}}\\
|
||||
\end{mathe}
|
||||
|
||||
und \fbox{$B_{1}$ bildet eine Basis für $U_{1}$}.
|
||||
@ -5295,9 +5295,9 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
Zeilenstufenform für $A_{2}$:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
A_{2} &= &\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
\end{smatrix}\\
|
||||
A_{2} &= &\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Darum sind $x_{2}$, $x_{3}$, $x_{4}$ frei und $x_{1}$ wird durch diese bestimmt.
|
||||
@ -5329,11 +5329,11 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
U_{2}
|
||||
&= &\{\mathbf{x}\in V\mid A_{2}\mathbf{x}=\zerovector\}
|
||||
&= &\vectorspacespan\underbrace{
|
||||
\{
|
||||
\left\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}1\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}1\\0\\0\\1\\\end{svector}
|
||||
\}
|
||||
\right\}
|
||||
}_{=:B_{2}}\\
|
||||
\end{mathe}
|
||||
|
||||
@ -5344,14 +5344,14 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
|
||||
\begin{mathe}[mc]{rclcl}
|
||||
A_{3}
|
||||
&= &\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
1&-1&-1&-1\\
|
||||
\end{smatrix}
|
||||
&\rightsquigarrow &\begin{smatrix}
|
||||
1&-1&-2&2\\
|
||||
0&0&1&-3\\
|
||||
\end{smatrix}\\
|
||||
&= &\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
1 &-1 &-1 &-1\\
|
||||
\end{matrix}
|
||||
&\rightsquigarrow &\begin{matrix}{cccc}
|
||||
1 &-1 &-2 &2\\
|
||||
0 &0 &1 &-3\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Darum sind $x_{2}$, $x_{4}$, frei und $x_{1}$, $x_{3}$ werden durch diese bestimmt.
|
||||
@ -5385,10 +5385,10 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
U_{1}\cap U_{2}
|
||||
&= &\{\mathbf{x}\in V\mid A_{3}\mathbf{x}=\zerovector\}
|
||||
&= &\vectorspacespan\underbrace{
|
||||
\{
|
||||
\left\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}4\\0\\3\\1\\\end{svector}
|
||||
\}
|
||||
\right\}
|
||||
}_{=:B_{3}}\\
|
||||
\end{mathe}
|
||||
|
||||
@ -5401,23 +5401,23 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
U_{1}+U_{2}
|
||||
&= &\vectorspacespan\{
|
||||
&= &\vectorspacespan\big\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}2\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}-2\\0\\0\\1\\\end{svector}
|
||||
\}
|
||||
+\vectorspacespan\{
|
||||
\big\}
|
||||
+\vectorspacespan\big\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}1\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}1\\0\\0\\1\\\end{svector}
|
||||
\}\\
|
||||
&= &\vectorspacespan\{
|
||||
\big\}\\
|
||||
&= &\vectorspacespan\big\{
|
||||
\begin{svector}1\\1\\0\\0\\\end{svector},
|
||||
\begin{svector}2\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}-2\\0\\0\\1\\\end{svector}
|
||||
\begin{svector}1\\0\\1\\0\\\end{svector},
|
||||
\begin{svector}1\\0\\0\\1\\\end{svector}
|
||||
\}.\\
|
||||
\big\}.\\
|
||||
\end{mathe}
|
||||
|
||||
Wir haben nun ein Erzeugendensystem bestimmt.
|
||||
@ -5433,12 +5433,12 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
Homogenes System:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
\begin{smatrix}
|
||||
1&2&-2&1&1\\
|
||||
1&0&0&0&0\\
|
||||
0&1&0&1&0\\
|
||||
0&0&1&0&1\\
|
||||
\end{smatrix}\\
|
||||
\begin{matrix}{ccccc}
|
||||
1 &2 &-2 &1 &1\\
|
||||
1 &0 &0 &0 &0\\
|
||||
0 &1 &0 &1 &0\\
|
||||
0 &0 &1 &0 &1\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Zeilenoperation
|
||||
@ -5446,12 +5446,12 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
anwenden:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
\begin{smatrix}
|
||||
1&2&-2&1&1\\
|
||||
0&2&-2&1&1\\
|
||||
0&1&0&1&0\\
|
||||
0&0&1&0&1\\
|
||||
\end{smatrix}\\
|
||||
\begin{matrix}{ccccc}
|
||||
1 &2 &-2 &1 &1\\
|
||||
0 &2 &-2 &1 &1\\
|
||||
0 &1 &0 &1 &0\\
|
||||
0 &0 &1 &0 &1\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Zeilenoperation
|
||||
@ -5459,12 +5459,12 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
anwenden:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
\begin{smatrix}
|
||||
1&2&-2&1&1\\
|
||||
0&2&-2&1&1\\
|
||||
0&0&2&1&-1\\
|
||||
0&0&1&0&1\\
|
||||
\end{smatrix}\\
|
||||
\begin{matrix}{ccccc}
|
||||
1 &2 &-2 &1 &1\\
|
||||
0 &2 &-2 &1 &1\\
|
||||
0 &0 &2 &1 &-1\\
|
||||
0 &0 &1 &0 &1\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
Zeilenoperation
|
||||
@ -5472,12 +5472,12 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$.
|
||||
anwenden:
|
||||
|
||||
\begin{mathe}[mc]{rcl}
|
||||
\begin{smatrix}
|
||||
1&2&-2&1&1\\
|
||||
0&2&-2&1&1\\
|
||||
0&0&2&1&-1\\
|
||||
0&0&0&1&-3\\
|
||||
\end{smatrix}\\
|
||||
\begin{matrix}{ccccc}
|
||||
1 &2 &-2 &1 &1\\
|
||||
0 &2 &-2 &1 &1\\
|
||||
0 &0 &2 &1 &-1\\
|
||||
0 &0 &0 &1 &-3\\
|
||||
\end{matrix}\\
|
||||
\end{mathe}
|
||||
|
||||
$\Longrightarrow$ nur $x_{5}$ frei.
|
||||
|
Loading…
Reference in New Issue
Block a user