master > master: Woche 9 (ÜB + quiz)
This commit is contained in:
		
							parent
							
								
									de93ecda3c
								
							
						
					
					
						commit
						a526a4b106
					
				
										
											Binary file not shown.
										
									
								
							| @ -61,6 +61,8 @@ | ||||
| %%            | | ||||
| %%            — body/uebung/ueb8.tex; | ||||
| %%            | | ||||
| %%            — body/uebung/ueb9.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska4.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska5.tex; | ||||
| @ -83,6 +85,8 @@ | ||||
| %%            | | ||||
| %%            — body/quizzes/quiz8.tex; | ||||
| %%            | | ||||
| %%            — body/quizzes/quiz9.tex; | ||||
| %%        | | ||||
| %%        — back/index.tex; | ||||
| %%            | | ||||
| %%            — ./back/quelle.bib; | ||||
| @ -2708,10 +2712,11 @@ und daraus die Parameter abzulesen. | ||||
| 
 | ||||
|     \begin{mathe}[mc]{c} | ||||
|         \begin{smatrix} | ||||
| 1&-2&4&0\\ | ||||
| 0&11&-15&1\\ | ||||
| 0&0&-7&1\\ | ||||
| \end{smatrix}\\ | ||||
|         1&-2&4&0\\ | ||||
|         0&11&-15&1\\ | ||||
|         0&0&-7&1\\ | ||||
|         \end{smatrix} | ||||
|         \\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
|     Wende die Zeilentransformation | ||||
| @ -2720,10 +2725,11 @@ und daraus die Parameter abzulesen. | ||||
| 
 | ||||
|     \begin{mathe}[mc]{c} | ||||
|         \begin{smatrix} | ||||
| 1&-2&4&0\\ | ||||
| 0&11&-8&0\\ | ||||
| 0&0&-7&1\\ | ||||
| \end{smatrix}\\ | ||||
|         1&-2&4&0\\ | ||||
|         0&11&-8&0\\ | ||||
|         0&0&-7&1\\ | ||||
|         \end{smatrix} | ||||
|         \\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
|     Aus der Zeilenstufenform erschließt sich, dass $t_{4}$ frei ist. | ||||
| @ -5865,6 +5871,489 @@ Seien $n\in\ntrlpos$ und $\mathbf{v}_{i}\in V$ für $i\in\{1,2,\ldots,n\}$. | ||||
|     eine Basis für $W:=\kmplx^{2}$, wenn dies als $\reell$-Vektorraum betrachtet wird. | ||||
|     Insbesondere gilt $\dim(W)=4$. | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/uebung/ueb9.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| \setcounternach{chapter}{9} | ||||
| \chapter[Woche 9]{Woche 9} | ||||
|     \label{ueb:9} | ||||
| 
 | ||||
| %% AUFGABE 9-1 | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 1]{} | ||||
|     \label{ueb:9:ex:1} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
|     Seien | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqcqcqcqc} | ||||
|              u_{1} := \begin{svector}1\\2\\-1\\1\\\end{svector}, | ||||
|             &u_{2} := \begin{svector}-1\\-2\\1\\2\\\end{svector}, | ||||
|             &v_{1} := \begin{svector}1\\2\\-1\\-2\\\end{svector}, | ||||
|             &v_{2} := \begin{svector}-1\\3\\0\\-2\\\end{svector}, | ||||
|             &v_{3} := \begin{svector}2\\-1\\-1\\1\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Vektoren in $\reell^{4}$ und setze | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqc} | ||||
|             U:=\vectorspacespan\{u_{1},u_{2}\} | ||||
|             &V:=\vectorspacespan\{v_{1},v_{2},v_{3}\}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     \begin{schattierteboxdunn} | ||||
|     \begin{claim} | ||||
|         \makelabel{claim:1:ueb:9:ex:1} | ||||
|         $U\subseteq V$. | ||||
|     \end{claim} | ||||
|     \end{schattierteboxdunn} | ||||
| 
 | ||||
|         \begin{einzug}[\rtab][\rtab] | ||||
|         \begin{proof} | ||||
|             Es reicht aus zu zeigen, dass $u_{1},u_{2}\in\vectorspacespan\{v_{1},v_{2},v_{3}\}$. | ||||
|             Zu diesem Zwecke reicht es aus | ||||
|             das homogene LGS $A\mathbf{x}=\zerovector$ | ||||
|             in Zeilenstufenform zu bringen, | ||||
|             wobei | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccl} | ||||
|                     A &= &\left( | ||||
|                         v_{1}\:v_{2}\:v_{3}\:u_{1}\:u_{2} | ||||
|                     \right) | ||||
|                     &= &\begin{smatrix} | ||||
| 1&-1&2&1&-1\\ | ||||
| 2&3&-1&2&-2\\ | ||||
| -1&0&-1&-1&1\\ | ||||
| -2&-2&1&1&2\\ | ||||
| \end{smatrix}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             und \textbf{zu zeigen}, dass $x_{4},x_{5}$ darin freie Unbekannte sind. | ||||
| 
 | ||||
|             \begin{algorithm}[\rtab][\rtab] | ||||
|                 Zeilenoperationen | ||||
|                     ${Z_{2}\leftsquigarrow Z_{2} - 2\cdot Z_{1}}$; | ||||
|                     ${Z_{3}\leftsquigarrow Z_{3} + Z_{1}}$ | ||||
|                 und | ||||
|                     ${Z_{4}\leftsquigarrow Z_{4} + 2\cdot Z_{1}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| 1 &-1 &2 &1 &-1\\ | ||||
| 0 &5 &-5 &0 &0\\ | ||||
| 0 &-1 &1 &0 &0\\ | ||||
| 0 &-4 &5 &3 &0\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|                 Zeilenoperation | ||||
|                     ${Z_{3}\leftsquigarrow Z_{3} + \frac{1}{5}\cdot Z_{2}}$ | ||||
|                 und | ||||
|                     ${Z_{4}\leftsquigarrow Z_{4} + \frac{4}{5}\cdot Z_{2}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| 1 &-1 &2 &1 &-1\\ | ||||
| 0 &5 &-5 &0 &0\\ | ||||
| 0 &0 &0 &0 &0\\ | ||||
| 0 &0 &1 &3 &0\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|                 Zeilenoperation | ||||
|                     ${Z_{3}\leftrightsquigarrow Z_{4}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| \boxed{1} &-1 &2 &1 &-1\\ | ||||
| 0 &\boxed{5} &-5 &0 &0\\ | ||||
| 0 &0 &\boxed{1} &3 &0\\ | ||||
| 0 &0 &0 &0 &0\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
|             \end{algorithm} | ||||
| 
 | ||||
|             Darum sind $x_{4},x_{5}$ im homogenen LGS frei. | ||||
|             Folglich gelten $u_{1},u_{2}\in\vectorspacespan\{v_{1},v_{2},v_{3}\}=V$ | ||||
|             und damit gilt $U=\vectorspacespan\{u_{1},u_{2}\}\subseteq V$. | ||||
|         \end{proof} | ||||
|         \end{einzug} | ||||
| 
 | ||||
|     \begin{rem} | ||||
|         \makelabel{rem:1:ueb:9:ex:1} | ||||
|         Im Beweis von \Cref{claim:1:ueb:9:ex:1} wurde aus der Feststellung, | ||||
|             dass $x_{4},x_{5}$ im LGS $A\mathbf{x}=\zerovector$ frei sind, | ||||
|         schlussfolgert, | ||||
|             dass $u_{1},u_{2}\in\vectorspacespan\{v_{1},v_{2},v_{3}\}$. | ||||
|         Diese Schlussfolgerung lässt sich rechtfertigen: | ||||
| 
 | ||||
|         \begin{kompaktitem}[\rtab][\rtab] | ||||
|             \item Sei $u\in U=\vectorspacespan\{u_{1},u_{2}\}$. | ||||
|                 Dann existieren $c_{1},c_{2}\in\reell$, | ||||
|                 so dass \fbox{$u=c_{1}u_{1}+c_{2}u_{2}$}. | ||||
|             \item | ||||
|                 Setze nun im homogenen LGS $x_{4}:=-c_{1}$ und $x_{5}:=-c_{2}$ | ||||
|                 und bestimme $x_{1},x_{2},x_{3}\in\reell$, gemäß der Zeilenstufenform. | ||||
|                 Dies liefert uns eine Lösung zu $A\mathbf{x}=\zerovector$. | ||||
|                 Wegen der Konstruktion von $A$ heißt dies | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         \eqtag[eq:1:ueb:9:ex:1] | ||||
|                         x_{1}v_{1}+x_{2}v_{2}+x_{3}v_{3}+x_{4}u_{1}+x_{5}u_{2} &= &\zerovector\\ | ||||
|                     \end{mathe} | ||||
|             \item | ||||
|                 Folglich gilt | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         u &= &c_{1}u_{1}+c_{2}u_{2}\\ | ||||
|                             &= &-x_{4}u_{1} + -x_{5}u_{2} | ||||
|                                 \quad\text{(per Konstruktion)}\\ | ||||
|                             &\eqcrefoverset{eq:1:ueb:9:ex:1}{=} | ||||
|                                 &x_{1}v_{1}+x_{2}v_{2}+x_{3}v_{3} | ||||
|                             \in \vectorspacespan\{v_{1},v_{2},v_{3}\}=V.\\ | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                 Da $u\in U$ beliebig gewählt wurde, | ||||
|                 gilt $U\subseteq V$. | ||||
|         \end{kompaktitem} | ||||
| 
 | ||||
|         Beachte hier, dass die Freiheit von $x_{4},x_{5}$ im LGS eine kritische Rolle spielt. | ||||
|     \end{rem} | ||||
| 
 | ||||
|     \begin{schattierteboxdunn} | ||||
|     \begin{claim} | ||||
|         \makelabel{claim:2:ueb:9:ex:1} | ||||
|         $\{v_{2}+U\}$ ist eine Basis für $V/U$. | ||||
|         Insbesondere gilt $\dim(V/U)=1$. | ||||
|     \end{claim} | ||||
|     \end{schattierteboxdunn} | ||||
| 
 | ||||
|         \begin{einzug}[\rtab][\rtab] | ||||
|         \begin{proof} | ||||
|             Unser Ziel ist es, zu bestimmen, | ||||
|             in wiefern sich das\footnote{evtl. nicht linear unabhängiges} System $\{u_{1},u_{2}\}$ | ||||
|             durch die Vektoren | ||||
|                 $v_{1},v_{2},v_{3}$ | ||||
|             erweitern lässt, | ||||
|             und dabei die linear abhängigen Vektoren zu entfernen | ||||
|             und die linear unabhängigen zu behalten | ||||
|             (vgl. Ansatz im Beweis von \cite[Satz~5.5.3]{sinn2020}). | ||||
|             Zu diesem Zwecke untersuchen wir das homogene LGS, | ||||
|                 $B\mathbf{x}=\zeromatrix$, | ||||
|             wobei | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccl} | ||||
|                     B &= &\left( | ||||
|                         u_{1}\:u_{2}\:v_{1}\:v_{2}\:v_{3} | ||||
|                     \right) | ||||
|                     &= &\begin{smatrix} | ||||
| 1&-1&1&-1&2\\ | ||||
| 2&-2&2&3&-1\\ | ||||
| -1&1&-1&0&-1\\ | ||||
| 1&2&-2&-2&1\\ | ||||
| \end{smatrix}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Es reicht aus hier \textbf{zu zeigen}, | ||||
|             dass $x_{3},x_{5}$ frei sind und $x_{4}$ nicht frei ist. | ||||
| 
 | ||||
|             \begin{algorithm}[\rtab][\rtab] | ||||
|                 Zeilenoperationen | ||||
|                     ${Z_{2}\leftsquigarrow Z_{2} - 2\cdot Z_{1}}$; | ||||
|                     ${Z_{3}\leftsquigarrow Z_{3} + Z_{1}}$ | ||||
|                 und | ||||
|                     ${Z_{4}\leftsquigarrow Z_{4} - Z_{1}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| 1 &-1 &1 &-1 &2\\ | ||||
| 0 &0 &0 &5 &-5\\ | ||||
| 0 &0 &0 &-1 &1\\ | ||||
| 0 &3 &-3 &-1 &-1\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|                 Zeilenoperation | ||||
|                     ${Z_{2}\leftrightsquigarrow Z_{4}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| 1 &-1 &1 &-1 &2\\ | ||||
| 0 &3 &-3 &-1 &-1\\ | ||||
| 0 &0 &0 &-1 &1\\ | ||||
| 0 &0 &0 &5 &-5\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|                 Zeilenoperation | ||||
|                     ${Z_{4}\leftsquigarrow Z_{4} + 5\cdot Z_{3}}$ | ||||
|                 anwenden: | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \begin{matrix}{ccccc} | ||||
| \boxed{1} &-1 &1 &-1 &2\\ | ||||
| 0 &\boxed{3} &-3 &-1 &-1\\ | ||||
| 0 &0 &0 &\boxed{-1} &1\\ | ||||
| 0 &0 &0 &0 &0\\ | ||||
| \end{matrix}.\\ | ||||
|                 \end{mathe} | ||||
|             \end{algorithm} | ||||
| 
 | ||||
|             Darum sind $x_{3},x_{5}$ frei und $x_{1},x_{2},x_{4}$ nicht. | ||||
|             Also ist $\{v_{2}+U\}$ eine (einelementige) Basis für $V/U$. | ||||
|         \end{proof} | ||||
|         \end{einzug} | ||||
| 
 | ||||
|         \begin{rem*} | ||||
|             Wie in \Cref{rem:1:ueb:9:ex:1} erklärt wurde, | ||||
|             sind die Spalten/Vektoren entsprechend den freien Variablen, | ||||
|             also $v_{1},v_{3}$, | ||||
|             linear abhängig von den Spalten/Vektoren entsprechend den nicht-freien Variablen, | ||||
|             also $u_{1},u_{2},u_{3}$. | ||||
|             Folglich gelten | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     v_{1}+U,v_{2}+U &\in &\vectorspacespan\{v_{3}+U\}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Und da $x_{4}$ nicht frei ist, hängt $v_{3}$ von $u_{1},u_{2}$ nicht ab. | ||||
|             Also gilt $v_{3}+U\neq\zerovector_{V/U}$. | ||||
|         \end{rem*} | ||||
| 
 | ||||
| %% AUFGABE 9-2 | ||||
| \clearpage | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 2]{} | ||||
|     \label{ueb:9:ex:2} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
|     Seien | ||||
| 
 | ||||
|         \begin{mathe}[mc]{cqcqcqcqc} | ||||
|             \mathbf{v}_{1} := \begin{svector}1\\-2\\3\\1\\\end{svector}, | ||||
|             &\mathbf{v}_{2} := \begin{svector}2\\-5\\7\\0\\\end{svector}, | ||||
|             &\mathbf{v}_{3} := \begin{svector}-2\\6\\-9\\-3\\\end{svector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Vektoren in $\reell^{4}$ und sei $\phi:\reell^{3}\to\reell^{4}$ | ||||
|     die eindeutig definierte lineare Abbildung mit $\phi(\mathbf{e}_{i})=\mathbf{v}_{i}$ | ||||
|     für $i\in\{1,2,3\}$, | ||||
|     wobei $\{\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\}$ | ||||
|     die kanonische Basis für $\reell^{3}$ ist. | ||||
| 
 | ||||
|     \begin{enumerate}{\bfseries (a)} | ||||
|         %% AUFGABE 9-2(a) | ||||
|         \item | ||||
|             Wegen Linearität gilt für alle $x_{1},x_{2},x_{3}\in\reell$ | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \phi(x_{1},x_{2},x_{3}) | ||||
|                     &= &\phi(x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}+x_{3}\mathbf{e}_{3})\\ | ||||
|                     &= &x_{1}\phi(\mathbf{e}_{1})+x_{2}\phi(\mathbf{e}_{2})+x_{3}\phi(\mathbf{e}_{3})\\ | ||||
|                     &= &x_{1}\mathbf{v}_{1}+x_{2}\mathbf{v}_{2}+x_{3}\mathbf{v}_{3}\\ | ||||
|                     &= &A\mathbf{x}\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             wobei | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     A &:= &\begin{smatrix} | ||||
| 1&2&-2\\ | ||||
| -2&-5&6\\ | ||||
| 3&7&-9\\ | ||||
| 1&0&-3\\ | ||||
| \end{smatrix} | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Insbesondere gilt \fbox{$\phi=\phi_{A}$}. | ||||
|             Im nächsten Aufgabenteil nutzen wir diese Darstellung aus. | ||||
| 
 | ||||
|         %% AUFGABE 9-2(b) | ||||
|         \item | ||||
|             Um zu bestimmen, ob $\phi=\phi_{A}$ injektiv, surjektiv, bijektiv ist, | ||||
|             berechnen wir die Zeilenstufenform von $A$. | ||||
|             Es gilt | ||||
| 
 | ||||
|                 \begin{algorithm}[\rtab][\rtab] | ||||
|                     Zeilenoperationen | ||||
|                         ${Z_{2}\leftsquigarrow Z_{2} + 2\cdot Z_{1}}$; | ||||
|                         ${Z_{2}\leftsquigarrow Z_{2} - 3\cdot Z_{1}}$ | ||||
|                     und | ||||
|                         ${Z_{3}\leftsquigarrow Z_{3} - Z_{1}}$ | ||||
|                     anwenden: | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         \begin{matrix}{ccccc} | ||||
| 1 &2 &-2\\ | ||||
| 0 &-1 &2\\ | ||||
| 0 &1 &-3\\ | ||||
| 0 &-2 &-1\\ | ||||
| \end{matrix}.\\ | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                     Zeilenoperation | ||||
|                         ${Z_{3}\leftsquigarrow Z_{3} + Z_{2}}$ | ||||
|                     und | ||||
|                         ${Z_{4}\leftsquigarrow Z_{4} - 2\cdot Z_{2}}$ | ||||
|                     anwenden: | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         \begin{matrix}{ccccc} | ||||
| 1 &2 &-2\\ | ||||
| 0 &-1 &2\\ | ||||
| 0 &0 &-1\\ | ||||
| 0 &0 &-5\\ | ||||
| \end{matrix}.\\ | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                     Zeilenoperation | ||||
|                         ${Z_{4}\leftsquigarrow Z_{4} - 5\cdot Z_{3}}$ | ||||
|                     anwenden: | ||||
| 
 | ||||
|                     \begin{mathe}[mc]{rcl} | ||||
|                         \begin{matrix}{ccccc} | ||||
| \boxed{1} &2 &-2\\ | ||||
| 0 &\boxed{-1} &2\\ | ||||
| 0 &0 &\boxed{-1}\\ | ||||
| 0 &0 &0\\ | ||||
| \end{matrix}.\\ | ||||
|                     \end{mathe} | ||||
| 
 | ||||
|                     $\Rightarrow$ $\rank(A)=\text{\upshape Zeilenrang}(A)=3$ | ||||
|                     (siehe \cite[Satz~6.3.11]{sinn2020}). | ||||
|                 \end{algorithm} | ||||
| 
 | ||||
|             Also gilt $\phi=\phi_{A}$, | ||||
|             wobei $A$ eine $m\times n$-Matrix ist, | ||||
|             wobei $m=4$, $n=3$, | ||||
|             und $\rank(A)=3$. | ||||
|             Laut \cite[Korollar~6.3.15]{sinn2020} erhalten wir also | ||||
| 
 | ||||
|                 \begin{kompaktitem} | ||||
|                     \item | ||||
|                         $\phi$ \fbox{ist injektiv}, | ||||
|                             weil $\rank(A)=3\geq 3=n$. | ||||
|                     \item | ||||
|                         $\phi$ ist \fbox{nicht surjektiv}, | ||||
|                             weil $\rank(A)=3\ngeq 4=m$. | ||||
|                     \item | ||||
|                         $\phi$ ist \fbox{nicht bijektiv}, | ||||
|                             weil $m\neq n$. | ||||
|                 \end{kompaktitem} | ||||
|     \end{enumerate} | ||||
| 
 | ||||
| %% AUFGABE 9-3 | ||||
| \clearpage | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 3]{} | ||||
|     \label{ueb:9:ex:3} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
|     Seien $U,V,W$ Vektorräume über einem Körper $K$. | ||||
|     Seien ${\phi:U\to V}$ und ${\psi:V\to W}$ lineare Abbildungen. | ||||
| 
 | ||||
|     \begin{schattierteboxdunn} | ||||
|     \begin{claim*} | ||||
|         ${\psi\circ \phi:U\to W}$ | ||||
|         ist injektiv $\Leftrightarrow$ | ||||
|         $\phi$ injektiv und $\ker(\psi)\cap\range(\phi)=\{0\}$. | ||||
|     \end{claim*} | ||||
|     \end{schattierteboxdunn} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             \hinRichtung | ||||
|                 Angenommen, $\psi\circ\phi$ sei injektiv. | ||||
|                 \textbf{Zu zeigen:} (i)~$\phi$ injektiv und (ii)~$\ker(\psi)\cap\range(\phi)=\{0\}$.\\ | ||||
| 
 | ||||
|                 \begin{enumerate}{\bfseries (i)}[\rtab][\rtab] | ||||
|                     \item | ||||
|                         Seien $x,x'\in U$ beliebig. Dann gilt | ||||
| 
 | ||||
|                         \begin{mathe}[mc]{rcl} | ||||
|                             \phi(x)=\phi(x') | ||||
|                                 &\Longrightarrow | ||||
|                                     &\psi(\phi(x))=\psi(\phi(x'))\\ | ||||
|                                 &\Longrightarrow | ||||
|                                     &(\psi\circ \phi)(x)=(\psi\circ \phi)(x')\\ | ||||
|                                 &\textoverset{$\psi\circ\phi$ inj.}{\Longrightarrow} | ||||
|                                     &x=x'.\\ | ||||
|                         \end{mathe} | ||||
| 
 | ||||
|                         Folglich ist $\phi$ injektiv. | ||||
|                     \item | ||||
|                         Sei $y\in V$ beliebig. Es gilt | ||||
| 
 | ||||
|                         \begin{longmathe}[mc]{RCL} | ||||
|                             y\in\ker(\psi)\cap\range(\phi) | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &y\in\range(\phi)\,\text{und}\,y\in\ker(\psi)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &(\exists{x\in U:~}y=\phi(x))\,\text{und}\,y\in\ker(\psi)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,y\in\ker(\psi))\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,\psi(y)=0)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,\psi(\phi(x))=0)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,(\psi\circ\phi)(x)=0)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,x\in\ker(\psi\circ\phi))\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,x\in\{0\})\\ | ||||
|                                     &&\text{(wegen Injektivität von $\psi\circ\phi$ + \cite[Lemma~6.1.4(1)]{sinn2020})}\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &\exists{x\in U:~}(y=\phi(x)\,\text{und}\,x=0)\\ | ||||
|                                 &\Longleftrightarrow | ||||
|                                     &y=\phi(0)=0 | ||||
|                                 \Longleftrightarrow | ||||
|                                     y\in\{0\}.\\ | ||||
|                         \end{longmathe} | ||||
| 
 | ||||
|                         Darum gilt $\ker(\psi)\cap\range(\phi)=\{0\}$. | ||||
|                 \end{enumerate} | ||||
| 
 | ||||
|             \herRichtung | ||||
|                 Angenommen, (i)~$\phi$ sei injektiv und (ii)~$\ker(\psi)\cap\range(\phi)=\{0\}$. | ||||
|                 \textbf{Zu zeigen:} $\psi\circ\phi$ injektiv.\\ | ||||
|                 Hierfür wenden wir \cite[Lemma~6.1.4(1)]{sinn2020} an. | ||||
|                 Sei $x\in U$ beliebig. Es gilt | ||||
| 
 | ||||
|                     \begin{longmathe}[mc]{RCL} | ||||
|                         x\in\ker(\psi\circ\phi) | ||||
|                             &\Longleftrightarrow | ||||
|                                 &\psi(\phi(x))=(\psi\circ\phi)(x)=0\\ | ||||
|                             &\Longleftrightarrow | ||||
|                                 &\phi(x)\in\ker(\psi)\\ | ||||
|                             &\Longleftrightarrow | ||||
|                                 &\phi(x)\in\ker(\psi)\cap\range(\phi) | ||||
|                                 \quad | ||||
|                                 \text{($\phi(x)$ ist immer in $\range(\phi)$)}\\ | ||||
|                             &\textoverset{(ii)}{\Longleftrightarrow} | ||||
|                                 &\phi(x)\in\{0\}\\ | ||||
|                             &\Longleftrightarrow | ||||
|                                 &\phi(x)=0\\ | ||||
|                             &\Longleftrightarrow | ||||
|                                 &x\in\ker(\phi)\\ | ||||
|                             &\Longleftrightarrow | ||||
|                                 &x\in\{0\} | ||||
|                                 \quad\text{(wegen (i) + \cite[Lemma~6.1.4(1)]{sinn2020})}\\\ | ||||
|                     \end{longmathe} | ||||
| 
 | ||||
|                 Darum gilt $\ker(\psi\circ\phi)=\{0\}$ | ||||
|                 und laut \cite[Lemma~6.1.4(1)]{sinn2020} | ||||
|                 ist dies zur Injektivität von $\psi\circ\phi$ äquivalent. | ||||
|         \end{proof} | ||||
| 
 | ||||
| \setcounternach{part}{2} | ||||
| \part{Selbstkontrollenaufgaben} | ||||
| 
 | ||||
| @ -7034,22 +7523,22 @@ Für jeden Fall berechnen wir $\ggT(a,b)$ mittels des Euklidischen Algorithmus | ||||
|             $a$ &$b$ &Restberechnung (symbolisch) &Restberechnung (Werte)\\ | ||||
|         \hline | ||||
|         \endhead | ||||
| $1529$ &$170$ &$a = b\cdot q_{1} + r_{1}$ &$1529 = 170\cdot 8 + 169$\\ | ||||
| &&$b = r_{1}\cdot q_{2} + r_{2}$ &$170 = 169\cdot 1 + \boxed{\mathbf{1}}$\\ | ||||
| &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$169 = 1\cdot 169 + 0$\\ | ||||
| \hline | ||||
| $13758$ &$21$ &$a = b\cdot q_{1} + r_{1}$ &$13758 = 21\cdot 655 + \boxed{\mathbf{3}}$\\ | ||||
| &&$b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 3\cdot 7 + 0$\\ | ||||
| \hline | ||||
| $210$ &$45$ &$a = b\cdot q_{1} + r_{1}$ &$210 = 45\cdot 4 + 30$\\ | ||||
| &&$b = r_{1}\cdot q_{2} + r_{2}$ &$45 = 30\cdot 1 + \boxed{\mathbf{15}}$\\ | ||||
| &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$30 = 15\cdot 2 + 0$\\ | ||||
| \hline | ||||
| $1209$ &$102$ &$a = b\cdot q_{1} + r_{1}$ &$1209 = 102\cdot 11 + 87$\\ | ||||
| &&$b = r_{1}\cdot q_{2} + r_{2}$ &$102 = 87\cdot 1 + 15$\\ | ||||
| &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$87 = 15\cdot 5 + 12$\\ | ||||
| &&$r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$15 = 12\cdot 1 + \boxed{\mathbf{3}}$\\ | ||||
| &&$r_{3} = r_{4}\cdot q_{5} + r_{5}$ &$12 = 3\cdot 4 + 0$\\ | ||||
|         $1529$ &$170$ &$a = b\cdot q_{1} + r_{1}$ &$1529 = 170\cdot 8 + 169$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$170 = 169\cdot 1 + \boxed{\mathbf{1}}$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$169 = 1\cdot 169 + 0$\\ | ||||
|         \hline | ||||
|         $13758$ &$21$ &$a = b\cdot q_{1} + r_{1}$ &$13758 = 21\cdot 655 + \boxed{\mathbf{3}}$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 3\cdot 7 + 0$\\ | ||||
|         \hline | ||||
|         $210$ &$45$ &$a = b\cdot q_{1} + r_{1}$ &$210 = 45\cdot 4 + 30$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$45 = 30\cdot 1 + \boxed{\mathbf{15}}$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$30 = 15\cdot 2 + 0$\\ | ||||
|         \hline | ||||
|         $1209$ &$102$ &$a = b\cdot q_{1} + r_{1}$ &$1209 = 102\cdot 11 + 87$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$102 = 87\cdot 1 + 15$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$87 = 15\cdot 5 + 12$\\ | ||||
|         &&$r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$15 = 12\cdot 1 + \boxed{\mathbf{3}}$\\ | ||||
|         &&$r_{3} = r_{4}\cdot q_{5} + r_{5}$ &$12 = 3\cdot 4 + 0$\\ | ||||
|         \hline | ||||
|         \hline | ||||
|     \end{longtable} | ||||
| @ -7070,18 +7559,18 @@ Wir verwenden die Berechnungen aus der Tabelle in SKA \ref{ska:5:ex:6}. | ||||
|             $a$ &$b$ &Rest (symbolisch) &Rest (Werte)\\ | ||||
|         \hline | ||||
|         \endhead | ||||
| $1529$ &$170$ &$r_{1} = a - 8\cdot b$ &$169 = 1\cdot a + -8\cdot b$\\ | ||||
| &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{1 = \mathbf{-1}\cdot a + \mathbf{9}\cdot b}$\\ | ||||
| \hline | ||||
| $13758$ &$21$ &$r_{1} = a - 655\cdot b$ &$\boxed{3 = \mathbf{1}\cdot a + \mathbf{-655}\cdot b}$\\ | ||||
| \hline | ||||
| $210$ &$45$ &$r_{1} = a - 4\cdot b$ &$30 = 1\cdot a + -4\cdot b$\\ | ||||
| &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{15 = \mathbf{-1}\cdot a + \mathbf{5}\cdot b}$\\ | ||||
| \hline | ||||
| $1209$ &$102$ &$r_{1} = a - 11\cdot b$ &$87 = 1\cdot a + -11\cdot b$\\ | ||||
| &&$r_{2} = b - 1\cdot r_{1}$ &$15 = -1\cdot a + 12\cdot b$\\ | ||||
| &&$r_{3} = r_{1} - 5\cdot r_{2}$ &$12 = 6\cdot a + -71\cdot b$\\ | ||||
| &&$r_{4} = r_{2} - 1\cdot r_{3}$ &$\boxed{3 = \mathbf{-7}\cdot a + \mathbf{83}\cdot b}$\\ | ||||
|         $1529$ &$170$ &$r_{1} = a - 8\cdot b$ &$169 = 1\cdot a + -8\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{1 = \mathbf{-1}\cdot a + \mathbf{9}\cdot b}$\\ | ||||
|         \hline | ||||
|         $13758$ &$21$ &$r_{1} = a - 655\cdot b$ &$\boxed{3 = \mathbf{1}\cdot a + \mathbf{-655}\cdot b}$\\ | ||||
|         \hline | ||||
|         $210$ &$45$ &$r_{1} = a - 4\cdot b$ &$30 = 1\cdot a + -4\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{15 = \mathbf{-1}\cdot a + \mathbf{5}\cdot b}$\\ | ||||
|         \hline | ||||
|         $1209$ &$102$ &$r_{1} = a - 11\cdot b$ &$87 = 1\cdot a + -11\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$15 = -1\cdot a + 12\cdot b$\\ | ||||
|         &&$r_{3} = r_{1} - 5\cdot r_{2}$ &$12 = 6\cdot a + -71\cdot b$\\ | ||||
|         &&$r_{4} = r_{2} - 1\cdot r_{3}$ &$\boxed{3 = \mathbf{-7}\cdot a + \mathbf{83}\cdot b}$\\ | ||||
|         \hline | ||||
|         \hline | ||||
|     \end{longtable} | ||||
| @ -7748,10 +8237,10 @@ Für $x=[2]$ und $y=[3]$ gilt $x,y\neq [0]$ und aber $xy=[2\cdot 3]=[6]=[0]$. | ||||
|                     Restberechnung (symbolisch) &Restberechnung (Werte)\\ | ||||
|                 \hline | ||||
|                 \endhead | ||||
| $a = b\cdot q_{1} + r_{1}$ &$103 = 21\cdot 4 + 19$\\ | ||||
| $b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 19\cdot 1 + 2$\\ | ||||
| $r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$19 = 2\cdot 9 + \boxed{\mathbf{1}}$\\ | ||||
| $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$2 = 1\cdot 2 + 0$\\ | ||||
|         $a = b\cdot q_{1} + r_{1}$ &$103 = 21\cdot 4 + 19$\\ | ||||
|         $b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 19\cdot 1 + 2$\\ | ||||
|         $r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$19 = 2\cdot 9 + \boxed{\mathbf{1}}$\\ | ||||
|         $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$2 = 1\cdot 2 + 0$\\ | ||||
|                 \hline | ||||
|                 \hline | ||||
|             \end{longtable} | ||||
| @ -7765,9 +8254,9 @@ $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$2 = 1\cdot 2 + 0$\\ | ||||
|                     Rest (symbolisch) &Rest (Werte)\\ | ||||
|                 \hline | ||||
|                 \endhead | ||||
| $r_{1} = a - 4\cdot b$ &$19 = 1\cdot a + -4\cdot b$\\ | ||||
| $r_{2} = b - 1\cdot r_{1}$ &$2 = -1\cdot a + 5\cdot b$\\ | ||||
| $r_{3} = r_{1} - 9\cdot r_{2}$ &$\boxed{1 = \mathbf{10}\cdot a + \mathbf{-49}\cdot b}$\\ | ||||
|         $r_{1} = a - 4\cdot b$ &$19 = 1\cdot a + -4\cdot b$\\ | ||||
|         $r_{2} = b - 1\cdot r_{1}$ &$2 = -1\cdot a + 5\cdot b$\\ | ||||
|         $r_{3} = r_{1} - 9\cdot r_{2}$ &$\boxed{1 = \mathbf{10}\cdot a + \mathbf{-49}\cdot b}$\\ | ||||
|                 \hline | ||||
|                 \hline | ||||
|             \end{longtable} | ||||
| @ -8532,6 +9021,116 @@ für alle Teilmengen, $U\subseteq V$, und von | ||||
| für alle linearen Unterräume, $U\subseteq V$. | ||||
| \end{rem*} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/quizzes/quiz9.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| \setcounternach{chapter}{9} | ||||
| \chapter[Woche 9]{Woche 9} | ||||
|     \label{quiz:9} | ||||
| 
 | ||||
| \begin{claim*} | ||||
|     Seien $U,V,W$ Vektorräume über einem Körper, $K$. | ||||
|     Seien | ||||
|         ${\phi:U\to V}$ | ||||
|     und | ||||
|         ${\psi:V\to W}$ | ||||
|     linear. | ||||
|     Falls | ||||
| 
 | ||||
|         \begin{kompaktenum}{\bfseries (i)}[\rtab][\rtab] | ||||
|             \item\label{it:1:quiz:9} | ||||
|                 $\psi$ surjektiv ist; und | ||||
|             \item\label{it:2:quiz:9} | ||||
|                 $\ker(\psi)+\range(\phi)=V$, | ||||
|         \end{kompaktenum} | ||||
| 
 | ||||
|     dann ist ${\psi\circ\phi:U\to W}$ surjektiv. | ||||
| \end{claim*} | ||||
| 
 | ||||
|     \begin{einzug}[\rtab][\rtab] | ||||
|     \begin{proof} | ||||
|         Es reicht aus, für alle $z\in W$ | ||||
|         \textbf{zu zeigen}, dass ein $x\in U$ existiert mit | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcl} | ||||
|             \eqtag[eq:0:quiz:9]{$\ast$} | ||||
|             (\psi\circ\phi)(x) &= &z.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|         Sei also $z\in W$ beliebig. | ||||
| 
 | ||||
|         \begin{einzug}[\rtab] | ||||
|             Wegen \eqcref{it:1:quiz:9} existiert ein $y\in V$, | ||||
|             so dass | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \eqtag[eq:1:quiz:9] | ||||
|                     \phi(y) &= &z.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Da $y\in V$ und laut \eqcref{it:2:quiz:9} $V=\ker(\psi)+\range(\phi)$, | ||||
|             es existieren $y_{0}\in\ker(\psi)$ und $y_{1}\in\range(\phi)$, | ||||
|             so dass | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     \eqtag[eq:2:quiz:9] | ||||
|                     y &= &y_{0}+y_{1}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Da $y_{1}\in\range(\phi)$, existiert nun ein \fbox{$x\in U$}, | ||||
|             so dass $\phi(x)=y_{1}$. Wir berechnen nun | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcl} | ||||
|                     (\psi\circ\phi)(x) | ||||
|                         &= &\psi(\phi(x))\\ | ||||
|                         &= &\psi(y_{1})\\ | ||||
|                         &\eqcrefoverset{eq:2:quiz:9}{=} | ||||
|                             &\psi(y-y_{0})\\ | ||||
|                         &= &\psi(y)-\psi(y_{0})\\ | ||||
|                         &= &\psi(y)-0, | ||||
|                         \quad\text{da $y_{0}\in\ker(\psi)$}\\ | ||||
|                         &\eqcrefoverset{eq:1:quiz:9}{=} | ||||
|                             &z.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Damit haben wir \eqcref{eq:0:quiz:9} gezeigt. | ||||
|         \end{einzug} | ||||
| 
 | ||||
|         Also ist $\psi\circ\phi$ surjektiv. | ||||
|     \end{proof} | ||||
|     \end{einzug} | ||||
| 
 | ||||
| \begin{rem*} | ||||
|     Wir können in der Tat zeigen, die umgekehrte Richtung auch gilt: | ||||
|     Angenommen, $\psi\circ\phi$ sei surjektiv. | ||||
|     Dann gilt | ||||
|         $W\supseteq\psi(V)\supseteq\psi(\phi(U))=(\psi\circ\phi)(U)=W$, | ||||
|     und somit $\psi(V)=W$, | ||||
|     sodass \eqcref{it:1:quiz:9} gilt. | ||||
|     Und für alle $y\in V$, wegen Surjektivität von $\psi\circ\phi$, | ||||
|     existiert ein $x\in U$, so dass $\psi(y)=(\psi\circ\phi)(x)$. | ||||
|     Daraus folgt | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcccl} | ||||
|             \psi(y-\phi(x)) | ||||
|                 &= &\psi(y)-\psi(\phi(x)) | ||||
|                 &= &0,\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     sodass \fbox{$y-\phi(x)\in\ker(\psi)$} gilt. | ||||
|     Darum | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcccl} | ||||
|             y &= &\underbrace{y-\phi(x)}_{\in\ker(\psi)} | ||||
|                 +\underbrace{\phi(x)}_{\in\range(\phi)} | ||||
|             &\in &\ker(\psi)+\range(\phi).\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Also gilt die $\supseteq$-Inklusion in \eqcref{it:2:quiz:9}. | ||||
|     Und offensichtlich gilt die $\subseteq$-Inklusion in \eqcref{it:1:quiz:9}. | ||||
| \end{rem*} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: back/index.tex | ||||
| %% ******************************************************************************** | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user