master > master: Bemerkgung in Quiz9 überarbeitet
This commit is contained in:
		
							parent
							
								
									a526a4b106
								
							
						
					
					
						commit
						b034eefab5
					
				
										
											Binary file not shown.
										
									
								
							| @ -2715,8 +2715,7 @@ und daraus die Parameter abzulesen. | ||||
|         1&-2&4&0\\ | ||||
|         0&11&-15&1\\ | ||||
|         0&0&-7&1\\ | ||||
|         \end{smatrix} | ||||
|         \\ | ||||
|         \end{smatrix}\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
|     Wende die Zeilentransformation | ||||
| @ -2728,8 +2727,7 @@ und daraus die Parameter abzulesen. | ||||
|         1&-2&4&0\\ | ||||
|         0&11&-8&0\\ | ||||
|         0&0&-7&1\\ | ||||
|         \end{smatrix} | ||||
|         \\ | ||||
|         \end{smatrix}\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
|     Aus der Zeilenstufenform erschließt sich, dass $t_{4}$ frei ist. | ||||
| @ -7523,22 +7521,22 @@ Für jeden Fall berechnen wir $\ggT(a,b)$ mittels des Euklidischen Algorithmus | ||||
|             $a$ &$b$ &Restberechnung (symbolisch) &Restberechnung (Werte)\\ | ||||
|         \hline | ||||
|         \endhead | ||||
|         $1529$ &$170$ &$a = b\cdot q_{1} + r_{1}$ &$1529 = 170\cdot 8 + 169$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$170 = 169\cdot 1 + \boxed{\mathbf{1}}$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$169 = 1\cdot 169 + 0$\\ | ||||
|         \hline | ||||
|         $13758$ &$21$ &$a = b\cdot q_{1} + r_{1}$ &$13758 = 21\cdot 655 + \boxed{\mathbf{3}}$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 3\cdot 7 + 0$\\ | ||||
|         \hline | ||||
|         $210$ &$45$ &$a = b\cdot q_{1} + r_{1}$ &$210 = 45\cdot 4 + 30$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$45 = 30\cdot 1 + \boxed{\mathbf{15}}$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$30 = 15\cdot 2 + 0$\\ | ||||
|         \hline | ||||
|         $1209$ &$102$ &$a = b\cdot q_{1} + r_{1}$ &$1209 = 102\cdot 11 + 87$\\ | ||||
|         &&$b = r_{1}\cdot q_{2} + r_{2}$ &$102 = 87\cdot 1 + 15$\\ | ||||
|         &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$87 = 15\cdot 5 + 12$\\ | ||||
|         &&$r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$15 = 12\cdot 1 + \boxed{\mathbf{3}}$\\ | ||||
|         &&$r_{3} = r_{4}\cdot q_{5} + r_{5}$ &$12 = 3\cdot 4 + 0$\\ | ||||
|     $1529$ &$170$ &$a = b\cdot q_{1} + r_{1}$ &$1529 = 170\cdot 8 + 169$\\ | ||||
|     &&$b = r_{1}\cdot q_{2} + r_{2}$ &$170 = 169\cdot 1 + \boxed{\mathbf{1}}$\\ | ||||
|     &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$169 = 1\cdot 169 + 0$\\ | ||||
|     \hline | ||||
|     $13758$ &$21$ &$a = b\cdot q_{1} + r_{1}$ &$13758 = 21\cdot 655 + \boxed{\mathbf{3}}$\\ | ||||
|     &&$b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 3\cdot 7 + 0$\\ | ||||
|     \hline | ||||
|     $210$ &$45$ &$a = b\cdot q_{1} + r_{1}$ &$210 = 45\cdot 4 + 30$\\ | ||||
|     &&$b = r_{1}\cdot q_{2} + r_{2}$ &$45 = 30\cdot 1 + \boxed{\mathbf{15}}$\\ | ||||
|     &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$30 = 15\cdot 2 + 0$\\ | ||||
|     \hline | ||||
|     $1209$ &$102$ &$a = b\cdot q_{1} + r_{1}$ &$1209 = 102\cdot 11 + 87$\\ | ||||
|     &&$b = r_{1}\cdot q_{2} + r_{2}$ &$102 = 87\cdot 1 + 15$\\ | ||||
|     &&$r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$87 = 15\cdot 5 + 12$\\ | ||||
|     &&$r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$15 = 12\cdot 1 + \boxed{\mathbf{3}}$\\ | ||||
|     &&$r_{3} = r_{4}\cdot q_{5} + r_{5}$ &$12 = 3\cdot 4 + 0$\\ | ||||
|         \hline | ||||
|         \hline | ||||
|     \end{longtable} | ||||
| @ -7559,18 +7557,18 @@ Wir verwenden die Berechnungen aus der Tabelle in SKA \ref{ska:5:ex:6}. | ||||
|             $a$ &$b$ &Rest (symbolisch) &Rest (Werte)\\ | ||||
|         \hline | ||||
|         \endhead | ||||
|         $1529$ &$170$ &$r_{1} = a - 8\cdot b$ &$169 = 1\cdot a + -8\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{1 = \mathbf{-1}\cdot a + \mathbf{9}\cdot b}$\\ | ||||
|         \hline | ||||
|         $13758$ &$21$ &$r_{1} = a - 655\cdot b$ &$\boxed{3 = \mathbf{1}\cdot a + \mathbf{-655}\cdot b}$\\ | ||||
|         \hline | ||||
|         $210$ &$45$ &$r_{1} = a - 4\cdot b$ &$30 = 1\cdot a + -4\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{15 = \mathbf{-1}\cdot a + \mathbf{5}\cdot b}$\\ | ||||
|         \hline | ||||
|         $1209$ &$102$ &$r_{1} = a - 11\cdot b$ &$87 = 1\cdot a + -11\cdot b$\\ | ||||
|         &&$r_{2} = b - 1\cdot r_{1}$ &$15 = -1\cdot a + 12\cdot b$\\ | ||||
|         &&$r_{3} = r_{1} - 5\cdot r_{2}$ &$12 = 6\cdot a + -71\cdot b$\\ | ||||
|         &&$r_{4} = r_{2} - 1\cdot r_{3}$ &$\boxed{3 = \mathbf{-7}\cdot a + \mathbf{83}\cdot b}$\\ | ||||
|     $1529$ &$170$ &$r_{1} = a - 8\cdot b$ &$169 = 1\cdot a + -8\cdot b$\\ | ||||
|     &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{1 = \mathbf{-1}\cdot a + \mathbf{9}\cdot b}$\\ | ||||
|     \hline | ||||
|     $13758$ &$21$ &$r_{1} = a - 655\cdot b$ &$\boxed{3 = \mathbf{1}\cdot a + \mathbf{-655}\cdot b}$\\ | ||||
|     \hline | ||||
|     $210$ &$45$ &$r_{1} = a - 4\cdot b$ &$30 = 1\cdot a + -4\cdot b$\\ | ||||
|     &&$r_{2} = b - 1\cdot r_{1}$ &$\boxed{15 = \mathbf{-1}\cdot a + \mathbf{5}\cdot b}$\\ | ||||
|     \hline | ||||
|     $1209$ &$102$ &$r_{1} = a - 11\cdot b$ &$87 = 1\cdot a + -11\cdot b$\\ | ||||
|     &&$r_{2} = b - 1\cdot r_{1}$ &$15 = -1\cdot a + 12\cdot b$\\ | ||||
|     &&$r_{3} = r_{1} - 5\cdot r_{2}$ &$12 = 6\cdot a + -71\cdot b$\\ | ||||
|     &&$r_{4} = r_{2} - 1\cdot r_{3}$ &$\boxed{3 = \mathbf{-7}\cdot a + \mathbf{83}\cdot b}$\\ | ||||
|         \hline | ||||
|         \hline | ||||
|     \end{longtable} | ||||
| @ -8237,10 +8235,10 @@ Für $x=[2]$ und $y=[3]$ gilt $x,y\neq [0]$ und aber $xy=[2\cdot 3]=[6]=[0]$. | ||||
|                     Restberechnung (symbolisch) &Restberechnung (Werte)\\ | ||||
|                 \hline | ||||
|                 \endhead | ||||
|         $a = b\cdot q_{1} + r_{1}$ &$103 = 21\cdot 4 + 19$\\ | ||||
|         $b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 19\cdot 1 + 2$\\ | ||||
|         $r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$19 = 2\cdot 9 + \boxed{\mathbf{1}}$\\ | ||||
|         $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$2 = 1\cdot 2 + 0$\\ | ||||
|     $a = b\cdot q_{1} + r_{1}$ &$103 = 21\cdot 4 + 19$\\ | ||||
|     $b = r_{1}\cdot q_{2} + r_{2}$ &$21 = 19\cdot 1 + 2$\\ | ||||
|     $r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$19 = 2\cdot 9 + \boxed{\mathbf{1}}$\\ | ||||
|     $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$2 = 1\cdot 2 + 0$\\ | ||||
|                 \hline | ||||
|                 \hline | ||||
|             \end{longtable} | ||||
| @ -8254,9 +8252,9 @@ Für $x=[2]$ und $y=[3]$ gilt $x,y\neq [0]$ und aber $xy=[2\cdot 3]=[6]=[0]$. | ||||
|                     Rest (symbolisch) &Rest (Werte)\\ | ||||
|                 \hline | ||||
|                 \endhead | ||||
|         $r_{1} = a - 4\cdot b$ &$19 = 1\cdot a + -4\cdot b$\\ | ||||
|         $r_{2} = b - 1\cdot r_{1}$ &$2 = -1\cdot a + 5\cdot b$\\ | ||||
|         $r_{3} = r_{1} - 9\cdot r_{2}$ &$\boxed{1 = \mathbf{10}\cdot a + \mathbf{-49}\cdot b}$\\ | ||||
|     $r_{1} = a - 4\cdot b$ &$19 = 1\cdot a + -4\cdot b$\\ | ||||
|     $r_{2} = b - 1\cdot r_{1}$ &$2 = -1\cdot a + 5\cdot b$\\ | ||||
|     $r_{3} = r_{1} - 9\cdot r_{2}$ &$\boxed{1 = \mathbf{10}\cdot a + \mathbf{-49}\cdot b}$\\ | ||||
|                 \hline | ||||
|                 \hline | ||||
|             \end{longtable} | ||||
| @ -9054,7 +9052,7 @@ für alle linearen Unterräume, $U\subseteq V$. | ||||
|         \textbf{zu zeigen}, dass ein $x\in U$ existiert mit | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcl} | ||||
|             \eqtag[eq:0:quiz:9]{$\ast$} | ||||
|             \eqtag[eq:0:quiz:9] | ||||
|             (\psi\circ\phi)(x) &= &z.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
| @ -9102,15 +9100,18 @@ für alle linearen Unterräume, $U\subseteq V$. | ||||
|     \end{einzug} | ||||
| 
 | ||||
| \begin{rem*} | ||||
|     Wir können in der Tat zeigen, die umgekehrte Richtung auch gilt: | ||||
|     Wir können in der Tat zeigen, dass die umgekehrte Richtung auch gilt: | ||||
|     Angenommen, $\psi\circ\phi$ sei surjektiv. | ||||
|     Dann gilt | ||||
|         $W\supseteq\psi(V)\supseteq\psi(\phi(U))=(\psi\circ\phi)(U)=W$, | ||||
|     und somit $\psi(V)=W$, | ||||
|     sodass \eqcref{it:1:quiz:9} gilt. | ||||
|     Und für alle $y\in V$, wegen Surjektivität von $\psi\circ\phi$, | ||||
|     existiert ein $x\in U$, so dass $\psi(y)=(\psi\circ\phi)(x)$. | ||||
|     Daraus folgt | ||||
|     Für \eqcref{it:2:quiz:9} brauchen wir nur die $\supseteq$-Inklusion zu zeigen, | ||||
|     da die $\subseteq$-Inklusion offensichtlich wahr ist. | ||||
|     Sei also $y\in V$ beliebig. | ||||
|     Wegen Surjektivität von $\psi\circ\phi$ existiert nun ein $x\in U$, | ||||
|     so dass $\psi(y)=(\psi\circ\phi)(x)$. | ||||
|     Beobachte man, dass | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcccl} | ||||
|             \psi(y-\phi(x)) | ||||
| @ -9127,8 +9128,10 @@ für alle linearen Unterräume, $U\subseteq V$. | ||||
|             &\in &\ker(\psi)+\range(\phi).\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Also gilt die $\supseteq$-Inklusion in \eqcref{it:2:quiz:9}. | ||||
|     Und offensichtlich gilt die $\subseteq$-Inklusion in \eqcref{it:1:quiz:9}. | ||||
|     Damit haben wir bewiesen, dass $V\subseteq \ker(\psi)+\range(\phi)$ | ||||
|     (d.\,h. die $\supseteq$-Inklusion in \eqcref{it:2:quiz:9}).\\ | ||||
|     Darum gilt: | ||||
|         $\psi\circ\phi$ surjektiv $\Rightarrow$ \eqcref{it:1:quiz:9}+\eqcref{it:2:quiz:9} gelten. | ||||
| \end{rem*} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user