master > master: A6 ähnliche Aufgabe

This commit is contained in:
RD 2021-03-24 14:58:23 +01:00
parent 37bf351264
commit c73d365338
1 changed files with 52 additions and 8 deletions

View File

@ -1,16 +1,16 @@
v1=... w1=...
v2=... w2=... wie in Aufgabe
v3 = (1 0 0)
[oder sagen: „es gibt“ ein v3, so dass {v1,v2,v3} eine Basis von R^3 ist]
wähle w3 in R^3 beliebig
---> ex. lin Abb φ : R^3 ---> R^3 (siehe Satz 6.1.13)
v1=... w1=...
v2=... w2=... wie in Aufgabe
v3 = (1 0 0)
[oder sagen: „es gibt“ ein v3, so dass {v1,v2,v3} eine Basis von R^3 ist]
wähle w3 in R^3 beliebig
---> ex. lin Abb φ : R^3 ---> R^3 (siehe Satz 6.1.13)
5b)
ii) wir wissen, dass {w1, w2} lin unabh.
---> also ex. w3 ∈ R^3 s. d. {w1, w2, w3} eine Basis von R^3 ist.
---> lin Abb φ wie vorher erzeugen.
---> also ex. w3 ∈ R^3 s. d. {w1, w2, w3} eine Basis von R^3 ist.
---> lin Abb φ wie vorher erzeugen.
Zz: φ ist injektiv. (Dann folgt: φ bijektiv (weil VR beide 3-dimensional sind), also φ ein Isomorphismus)
Sei x ∈ Kern(φ).
Dann x = c1·v1 + c2·v2 + c3·v3
@ -103,3 +103,47 @@ d)
Darum gilt x ∈ l. S.
QED.
Es seien U, V und W Vektorräume über einem Körper K. Seien φ: U → V und ψ : V → W lineare Abbildungen.
Beh. ψ ◦ φ injektiv <==> (φ injektiv ist + Kern(ψ) ∩ Bild(φ) = {0}).
Beweis.
(⟹) Angenommen, ψ ◦ φ injektiv.
Zu zeigen:
i) φ injektiv
ii) Kern(ψ) ∩ Bild(φ) = {0}.
Zu i): Zu zeigen: Kern(φ) = {0}.
Sei also x ∈ U mit φ(x) = 0.
Dann (ψ ◦ φ)(x) = ψ(φ(x)) = ψ(0) = 0.
Also x ∈ Kern(ψ ◦ φ) und per ANNAHME Kern(ψ ◦ φ) = {0} (weil injektiv).
Also x = 0.
Darum haben wir gezeigt, dass Kern(φ) ⊆ {0}.
Also Kern(φ) = {0} (weil 0 immer im Kern ist).
Zu ii): Zu zeigen Kern(ψ) ∩ Bild(φ) ⊆ {0} ( ⊇ gilt immer, weil 0 immer im Kern und Bild ).
Sei also x ∈ Kern(ψ) ∩ Bild(φ).
Zu zeigen: x = 0.
Also x ∈ Kern(ψ) und x ∈ Bild(φ).
Also ψ(x) = 0 und x = φ(y) für ein y ∈ U.
Also ψ(φ(y)) = 0.
Also y ∈ Kern(ψ ◦ φ) und per ANNAHME Kern(ψ ◦ φ) = {0} (weil injektiv).
Also y = 0.
Also x = φ(y) = φ(0) = 0.
(⟸) Angenommen,
i) φ injektiv
ii) Kern(ψ) ∩ Bild(φ) = {0}
Zu zeigen: ψ ◦ φ injektiv.
Es reicht also aus zu zeigen, dass
Kern(ψ ◦ φ) = {0}.
Sei also x ∈ U mit (ψ ◦ φ)(x) = 0.
Zu zeigen: x = 0.
...
... [Annahme i + ii iwo gebrauchen]
...
Also x = 0.
QED