linalg2020/notes/berechnungen_wk11.md

193 lines
4.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Woche 11 #
## SKA 11 ##
### Aufgabe 12 ###
Gegeben sei
A = -1 1
2 0
3 1
A ist in ^{3 x 2}
**Zu finden:** Matrizen P, Q, so dass P·A·Q im Format wie in Satz 6.3.10
Offensichtlich müssen
P ∈ ^{3 x 3}
Q ∈ ^{2 x 2}
gelten. Da bei X·Y müssen #col(X), #row(Y) übereinstimmen, weil
wenn man die Matrixmultiplikation ausführt, dann multipliziert man
- Zeilen aus X
mit
- Spalten aus Y.
Im Gaußverfahren
A —> E1·A —> E2·E1·A —> E3·E2·E1·A ... —> (E_r·E_{r-1}·...·E3·E2·E1)·A
—> Wir wollen (E_r·E_{r-1}·...·E3·E2·E1) als einzige Matrix erfassen, also als P.
Wir führen A in ein augmentiertes System mit der 3x3 Identitätsmatrix auf
-1 1 | 1 0 0
2 0 | 0 1 0
3 1 | 0 0 1
und führen das Gaußverfahren darauf auf. Dann geschieht (effektiv) parallel
linke Hälfte: A —> E1·A —> E2·E1·A —> E3·E2·E1·A ... —> (E_r·E_{r-1}·...·E3·E2·E1)·A
rechte Hälfte: I —> E1·I —> E2·E1·I —> E3·E2·E1·I ... —> (E_r·E_{r-1}·...·E3·E2·E1)·I
= (E_r·E_{r-1}·...·E3·E2·E1)
= P
Gaußverfahren:
-1 1 | 1 0 0
2 0 | 0 1 0
3 1 | 0 0 1
Zeilen 1 und 2 tauschen:
2 0 | 0 1 0
-1 1 | 1 0 0
3 1 | 0 0 1
Zeile_2 <— 2·Zeile_2 + Zeile_1
Zeile_3 <— 2·Zeile_3 - 3·Zeile_1
2 0 | 0 1 0
0 2 | 2 1 0
0 2 | 0 -3 2
Zeile_3 <— Zeile_3 - Zeile_2
2 0 | 0 1 0
0 2 | 2 1 0
0 0 | -2 -4 2
Zeile_1 <— Zeile_1 / 2
Zeile_2 <— Zeile_2 / 2
1 0 | 0 1/2 0
0 1 | 1 1/2 0
0 0 | -2 -4 2
Also gilt mit
P = 0 1 0
2 1 0
-2 -4 2
Dass P·A = Form aus Satz 6.3.10.
Setze Q := 2 x 2 Identitätsmatrix
Dann
P·A·Q = P·A = Matrix im Format aus Satz 6.3.10
### Anderes nicht so glückliches Beispiel ###
Angenommen wir hätten A als 3 x 5 Matrix und nach Ausführung des o. s. Verfahrens
0 1 0 0 0 | 0 1/2 0
0 0 0 1 0 | 1 1/2 0
0 0 0 0 0 | -2 -4 2
erzielt. Dann würden wir P wie oben setzen.
Aber wir müssen noch Q bestimmen.
Das können wir einfach durch Permutationen erreichen:
0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0
Q = 0 0 1 0 0 · 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1
Oder mit Gaußverfahren, transponieren wir und augmentieren wir mit der 5x5 Identitätsmatrix:
0 0 0 | 1 0 0 0 0
1 0 0 | 0 1 0 0 0
0 0 0 | 0 0 1 0 0
0 1 0 | 0 0 0 1 0
0 0 0 | 0 0 0 0 1
Zeile1 und Zeile2 vertauschen:
1 0 0 | 0 1 0 0 0
0 0 0 | 1 0 0 0 0
0 0 0 | 0 0 1 0 0
0 1 0 | 0 0 0 1 0
0 0 0 | 0 0 0 0 1
Zeile2 und Zeile4 vertauschen:
1 0 0 | 0 1 0 0 0
0 1 0 | 0 0 0 1 0
0 0 0 | 0 0 1 0 0
0 0 0 | 1 0 0 0 0
0 0 0 | 0 0 0 0 1
Rechte Hälfte __transponiert__:
0 0 0 1 0
1 0 0 0 0
Q = 0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
## Lineare Ausdehnung mit Komplikationen... ##
Betrachte
u1 = (1, 1, 0, 4)ᵀ
u2 = (1, 0, 0, 4)ᵀ
u3 = (0, 1, 0, 0)ᵀ
u4 = (1, -1, 0, 4)ᵀ
und φ : ^4 —> ^2 partiell definiert
φ(u1) = (8, 1)ᵀ
φ(u2) = (4, 5)ᵀ
φ(u3) = (4, -4)ᵀ
φ(u4) = (0, 9)ᵀ
Beachte:
{u1, u2} lin. unabh.
u3, u4 ∈ Lin{u1, u2}:
u3 = u1 - u2
u4 = u2 - u3 = u2 - (u1 - u2) = 2·u2 u1
Darum müssen
φ(u3) = φ(u1) - φ(u2)
φ(u4) = 2·φ(u2) φ(u1)
gelten.
Wenn nicht erfüllt ==> ex. keine lineare Ausdehnung.
Wenn erfüllt ==> ex. eine lineare Ausdehnung:
Setze
u1' = u1
u2' = u2
---> {u1', u2'} lin. unabh.
---> {u1', u2'} lässt sich zu einer Basis
{u1', u2', u3', u4'} von ^4
Wähle v3, v4 ∈ ^2 beliebig und setze
φ(u1') := (8, 1)ᵀ
φ(u2') := (4, 5)ᵀ
φ(u3') := v3
φ(u4') := v4
Dann laut Satz 6.1.13. ex. eine (eindeutige) lineare Abb.
φ : ^4 —> ^2
mit
φ(u1') = (8, 1)ᵀ
φ(u2') = (4, 5)ᵀ
φ(u3') = v3
φ(u4') = v4