linalg2020/notes/berechnungen_wk13.md

67 lines
1.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Woche 13 #
## Bestimmung von invertierbaren Elementen und ihren Inversen ##
Wir benutzen das Ergebnis
k invertierbar in /n
⟺ ggT(k, n) = 1
⟺ k, n teilerfremd
### Beispiel 1. ###
In /10:
k | 0 1 2 3 4 5 6 7 8 9
k invertierbar? | x √ x √ x x x √ x √
invertierbare Elemente: {1, 3, 7, 9}.
### Beispiel 2. ###
In /p sind alle Elemente außer 0 invertierbar. Wir berechnen die Inversen durch Ausprobieren
und wir beachten
- 0 hat kein Inverses
- 1 invertiert sich selbst
- für jedes x ≠ 0
- x invertiert sich selbst, oder
- ∃y ≠ x, so dass x, y einander invertieren.
/2
k | 0 1
k¯¹ | - 1
/3
k | 0 1 2
k¯¹ | - 1 2
/5
k | 0 1 2 3 4
k¯¹ | - 1 3 2 4
/7
k | 0 1 2 3 4 5 6
k¯¹ | - 1 4 5 2 3 6
Den Vorgang des Ausprobieren können wir für
/n verwenden, auch wenn n keine Primzahl ist.
Es gibt nur 3 statt 2 Möglichkeiten:
- x nicht invertierbar
- x invertiert sich selbst
- x invertiert durch ein y (und y invertiert durch x).
/4
k | 0 1 2 3
k¯¹ | - 1 - 3
/6
k | 0 1 2 3 4 5
k¯¹ | - 1 - - - 5