initial commit

This commit is contained in:
Niclas
2026-01-16 19:31:08 +01:00
parent 3415358509
commit dd3c3e4b81
9 changed files with 2174 additions and 0 deletions

1
.Rprofile Normal file
View File

@@ -0,0 +1 @@
source("renv/activate.R")

13
GraphonSimulation.Rproj Normal file
View File

@@ -0,0 +1,13 @@
Version: 1.0
RestoreWorkspace: Default
SaveWorkspace: Default
AlwaysSaveHistory: Default
EnableCodeIndexing: Yes
UseSpacesForTab: Yes
NumSpacesForTab: 2
Encoding: UTF-8
RnwWeave: Sweave
LaTeX: pdfLaTeX

324
R/graphon_distribution.R Normal file
View File

@@ -0,0 +1,324 @@
# Load the general quantile function, the loading can be improved later
# using the here package.
source("R/qinf.R")
# 1. Distribution Function -----------------------------------------------------
#' Empirical Distribution function for the graphon model.
#'
#' Computes the empirical expectation
#' \deqn{E[F_v(y - a^\top X_i)]}
#' using observed covariate samples \eqn{X_i}. This is done by evaluating the
#' supplied CDF \code{Fv} at the shifted values \eqn{y - a^\top X_i} and taking
#' their empirical average. See also Remark 2.1
#'
#' @param y Numeric scalar or vector of evaluation points.
#' @param a Numeric vector. Coefficient vector used to compute the inner products
#' \eqn{a^\top X_i}. Its length must match the number of columns in
#' \code{X_matrix}.
#' @param Fv Function. Cumulative distribution function of the noise variable
#' \eqn{v} (e.g., \code{pnorm}, \code{pexp}, etc.). Must accept a numeric vector
#' and return a numeric vector of the same length.
#' @param X_matrix Numeric matrix of dimension \eqn{n \times p}, where each row
#' corresponds to an observed covariate vector \eqn{X_i}.
#'
#' @return A numeric scalar giving the empirical expectation
#' \eqn{(1/n) \sum_{i=1}^n F_v(y - a^\top X_i)}.
#'
#' @examples
#' set.seed(1)
#' X <- matrix(rnorm(100), ncol = 2)
#' a <- c(1, -0.5)
#' y <- 0
#' pgraphon(y, a, pnorm, X)
#'
#' @export
pgraphon <- function(
y, # scalar
a, # vector (coefficient vector, can be one-dimensional)
Fv, # CDF function of the v's (e.g., pnorm, pexp, etc.)
X_matrix # n x p matrix: each row is X_i
) {
## 1.1 Check inputs ==========================================================
if (ncol(X_matrix) != length(a)) {
stop("Number of columns in X_matrix must match length of a")
}
if (!is.numeric(y)) {
stop("'y' must be numeric (scalar or vector)")
}
if (!is.numeric(a) || !is.vector(a)) {
stop("'a' must be a numeric vector")
}
if (!is.matrix(X_matrix) || !is.numeric(X_matrix)) {
stop("'X_matrix' must be a numeric matrix")
}
if (!is.function(Fv)) {
stop("'Fv' must be a function (a CDF)")
}
## 1.2 Compute the expected value ============================================
# Compute a^T X_i as in the paper. Here we switched to the R convention that each
# observation is a row. The paper assumes that each observation is a vector
inner_products <- as.vector(X_matrix %*% a) # vector of length n
# outer(y, inner_prod, "-") creates an |y| × n matrix where element (j,i)
# equals y[j] - inner_prod[i].
dev_mat <- outer(y, inner_products, "-")
# Apply CDF Fv to each deviation
# With sapply we do not have to assume that Fv is vectorized
cdf_values <- sapply(dev_mat, Fv)
# Row means give the empirical expectation for each y_j
out <- rowMeans(cdf_vals)
out
}
# 2. Density Function ----------------------------------------------------------
#' Empirical Graphon Density Estimate
#'
#' Computes the empirical expectation \eqn{E[f_v(y - a^\top X_i)]} using observed
#' covariate samples \eqn{X_i}. This serves as an empirical approximation of the
#' graphon density evaluated at \eqn{y}, where \eqn{f_v} is the density of the
#' latent variable \eqn{v}. See also Remark 2.1
#'
#' @param y Numeric scalar or vector of points at which the density should be
#' evaluated.
#' @param a Numeric vector. Coefficient vector used to compute the linear
#' projection \eqn{a^\top X_i}. Its length must match the number of columns in
#' \code{X_matrix}.
#' @param fv Function. Density function of the latent variable \eqn{v} (e.g.,
#' \code{dnorm}, \code{dexp}). Must accept a numeric vector and return a
#' numeric vector of the same length.
#' @param X_matrix Numeric matrix of size \eqn{n \times p}. Each row represents
#' an observed covariate vector \eqn{X_i}. The number of columns must match the
#' length of \code{a}.
#'
#' @return A numeric scalar giving the empirical average
#' \eqn{\frac{1}{n} \sum_{i=1}^n f_v(y - a^\top X_i)}.
#'
#' @examples
#' set.seed(1)
#' X <- matrix(rnorm(50), ncol = 2)
#' a <- c(1, -0.5)
#' dgraphon(y = 0.2, a = a, fv = dnorm, X_matrix = X)
#'
#' @export
dgraphon <- function(
y, # scalar
a, # vector (coefficient vector, can be )
fv, # density function of the v's (e.g., dnorm, dexp, etc.)
X_matrix # n x p matrix: each row is X_i
) {
## 2.1 Check inputs ----------------------------------------------------------
if (!is.numeric(y)) {
stop("'y' must be numeric (scalar or vector)")
}
if (!is.numeric(a) || !is.vector(a)) {
stop("'a' must be a numeric vector")
}
if (!is.matrix(X_matrix) || !is.numeric(X_matrix)) {
stop("'X_matrix' must be a numeric matrix")
}
if (ncol(X_matrix) != length(a)) {
stop("Number of columns in X_matrix must match length of a")
}
if (!is.function(fv)) {
stop("'fv' must be a function (a density)")
}
## 1.2 Compute the expected value ============================================
# Compute a^T X_i as in the paper. Here we switched to the R convention that each
# observation is a row. The paper assumes that each observation is a vector
inner_products <- as.vector(X_matrix %*% a) # vector of length n
# outer(y, inner_prod, "-") creates an |y| × n matrix where element (j,i)
# equals y[j] - inner_prod[i].
dev_mat <- outer(y, inner_products, "-")
# Apply the density function to each y[j]
# With sapply we do not have to assume that fv is vectorized
dens_vals <- sapply(dev_mat, fv)
# Row means give the empirical expectation for each y_j
out <- rowMeans(dens_vals)
out
}
# 3. Quantile Function ---------------------------------------------------------
#' Quantile of the empirical graphon distribution
#'
#' This is a thin wrapper around the generic infimumtype quantile routine
#' \code{qinf()}. It builds the CDF of the graphon,
#' \eqn{p_{\text{graphon}}(x) = \frac{1}{n}\sum_{i=1}^{n}F_v\bigl(x-a^\top X_i\bigr)},
#' and then finds the quantile(s) for the supplied probability(ies) \code{p}.
#'
#' @param p Numeric vector of probabilities in \eqn{[0,1]}. Values outside this
#' interval are rejected.
#' @param a Numeric coefficient vector. Its length must equal the number of
#' columns of \code{X_matrix}.
#' @param Fv Function. The CDF of the latent variable $v$. It must be
#' vectorised (i.e. accept a numeric vector and return a numeric vector of
#' the same length). Typical examples are \code{pnorm}, \code{pexp}, etc.
#' @param X_matrix Numeric matrix of dimension \eqn{n\times p}. Each row
#' corresponds to an observation $X_i$.
#' @param lower,upper Numeric scalars giving the search interval for the root
#' finder. By default they are set to \code{-Inf} and \code{Inf}.
#' @param tol Numeric tolerance for the bisection algorithm used inside
#' \code{qinf()}. The default is the squareroot of machine epsilon.
#' @param max.iter Maximum number of bisection iterations (safety guard).
#' @param ... Additional arguments that are passed **directly** to the
#' internal CDF \code{pgraphon}. This makes the wrapper flexible you do not
#' have to list every argument (e.g. \code{a}, \code{X_matrix}, \code{Fv})
#' explicitly.
#'
#' @return A numeric vector of the same length as \code{p} containing the
#' quantiles. The vector is named by the probabilities.
#'
#' @examples
#' ## ---- simple normal example ------------------------------------------------
#' set.seed(123)
#' X <- matrix(rnorm(200), ncol = 2) # n = 100, p = 2
#' a <- c(0.7, -0.3)
#' qgraphon(p = c(0.25, 0.5, 0.75),
#' a = a,
#' Fv = pnorm,
#' X_matrix = X)
#'
#' ## ---- mixture example ------------------------------------------------------
#' mix_cdf <- function(x, w = 0.4, mu = 0, sigma = 1) {
#' w * (x >= 0) + (1 - w) * pnorm(x, mean = mu, sd = sigma)
#' }
#' qgraphon(p = seq(0, 1, 0.2),
#' a = a,
#' Fv = mix_cdf,
#' X_matrix = X)
#'
#' @export
qgraphon <- function(
p, # probabilities
a, # coefficient vector
Fv, # CDF of the v's
X_matrix, # X_i samples, matrix
lower = -Inf, # lower bound roots
upper = Inf, # upper bound roots
tol = .Machine$double.eps^0.5, # parameter root finding
max.iter = 100) {
## 3.1 Check inputs ----------------------------------------------------------
if (!is.numeric(p) || any(is.na(p))) {
stop("'p' must be a numeric vector without NA values")
}
if (any(p < 0 | p > 1)) {
stop("All probabilities in 'p' must lie in [0, 1]")
}
if (!is.numeric(a) || !is.vector(a)) {
stop("'a' must be a numeric vector")
}
if (!is.matrix(X_matrix) || !is.numeric(X_matrix)) {
stop("'X_matrix' must be a numeric matrix")
}
if (ncol(X_matrix) != length(a)) {
stop("Number of columns of 'X_matrix' (", ncol(X_matrix),
") must equal length of 'a' (", length(a), ")")
}
if (!is.function(Fv)) {
stop("'Fv' must be a function (the CDF of the latent variable)")
}
## 3.2 Call the generic quantile function ------------------------------------
out <- qinf(F = pgraphon,
p = p,
lower = lower,
upper = upper,
tol = tol,
max.iter = max.iter,
a = a,
X_matrix = X_matrix,
Fv = Fv)
# Name the result by the probabilities this mirrors the behaviour of
# baseR quantile functions (e.g. qnorm, qbeta).
names(out) <- as.character(p)
out
}
# 4. Create conditional density ------------------------------------------------
#' Create a Conditional Density Function for the Graphon Model.
#'
#' This function constructs and returns another function that computes the
#' conditional density of the graphon model at specified values.
#' The returned function takes inputs \code{u} (probabilities) and \code{x}
#' (a scalar covariate value) and evaluates the graphon-based conditional
#' density using the supplied coefficient vector \code{a}, the density
#' \code{fv}, the distribution function \code{Fv}, and the empirical sample
#' \code{X_matrix}.
#'
#' @param a Numeric vector. Coefficient vector used in the graphon model; must
#' have length equal to the number of columns in \code{X_matrix}.
#' @param fv Function. Density function of the latent variable \eqn{v}
#' (e.g., \code{dnorm}, \code{dexp}).
#' @param Fv Function. Distribution function (CDF) corresponding to \code{fv}
#' (e.g., \code{pnorm}, \code{pexp}).
#' @param X_matrix Numeric matrix. An \eqn{n \times p} matrix of covariates
#' \eqn{X_i}, where each row corresponds to an observation.
#'
#' @return A function of two arguments \code{u} and \code{x}.
#' The returned function is vectorized in \code{u} and returns the conditional
#' density:
#' \deqn{ f_{U \mid X}(u \mid x) = \frac{f_v(q(u) - a^\top x)}{
#' \mathbb{E}[f_v(q(u) - a^\top X_i)] },
#' }
#' where \eqn{q(u)} is computed via \code{qgraphon()}.
#'
#' @details
#' Internally, the function constructs a scalar evaluator
#' \code{scalar_conditional_density()} that computes the conditional density for a
#' single value of \code{u}.
#' A wrapper function \code{conditional_density()} then applies this scalar
#' function to each element of the input vector \code{u}.
#'
#' Note: the function relies on the existence of \code{qgraphon()},
#' \code{pgraphon()}, and \code{dgraphon()} in the user's environment.
#'
#' @examples
#' \dontrun{
#' a <- c(1, -0.5)
#' fv <- dnorm
#' Fv <- pnorm
#' X_matrix <- matrix(rnorm(200), ncol = 2)
#'
#' cond_dens <- create_cond_density(a, fv, Fv, X_matrix)
#' cond_dens(c(0.2, 0.5, 0.8), x = 1.0)
#' }
#'
#' @export
create_cond_density <- function(
a,
fv,
Fv,
X_matrix){
scalar_conditional_density <-function(u, x) {
q_a <- qgraphon(u, a, Fv, X_matrix)
num <- fv(q_a - x %*% a)
den <- dgraphon(q_a, a, fv, X_matrix)
num / den
}
conditional_density <- function(u, x) {
vapply(u, scalar_conditional_density, numeric(1), x = x)
}
return(conditional_density)
}

146
R/qinf.R Normal file
View File

@@ -0,0 +1,146 @@
#' Generic infimumtype quantile function
#'
#' @param F A function that evaluates the distribution function
#' (CDF). It must be monotone nondecreasing in its first
#' argument and return values in $0,1$. Additional
#' arguments for the CDF can be supplied via `...`.
#' @param p Numeric vector of probabilities. Values must lie in
#' $0,1$; values outside this range give `NaN`.
#' @param lower Left end of the search interval. By default
#' `-Inf` is used; if the CDF is known to be zero below a
#' finite value you can give that value to speed up the
#' search.
#' @param upper Right end of the search interval. By default
#' `Inf` is used; if the CDF is known to be one above a
#' finite value you can give that value.
#' @param tol Desired absolute tolerance for the quantile. The
#' algorithm stops when the interval width is ≤ `tol`.
#' @param max.iter Maximum number of bisection iterations (safety
#' guard). The default is `1000`.
#' @param ... Additional arguments passed to `F`.
#'
#' @return A numeric vector of the same length as `p` containing the
#' infimumtype quantiles.
#' @examples
#' ## 1. Continuous normal distribution (compare with qnorm)
#' qinf(pnorm, p = c(0.025, 0.5, 0.975), lower = -10, upper = 10)
#' qnorm(c(0.025, 0.5, 0.975))
#'
#' ## 2. Discrete distribution: Binomial(10, 0.3)
#' Fbinom <- function(x, size, prob) pbinom(floor(x), size, prob)
#' qinf(Fbinom, p = seq(0, 1, 0.1), size = 10, prob = 0.3)
#' qbinom(seq(0, 1, 0.1), size = 10, prob = 0.3) # builtin quantile
#'
#' ## 3. Mixed distribution (continuous + point mass at 0)
#' Fmix <- function(x, sigma = 1) {
#' 0.3 * (x >= 0) + 0.7 * pnorm(x, sd = sigma)
#' }
#' qinf(Fmix, p = c(0.1, 0.3, 0.5, 0.9), lower = -5, upper = 5)
#' @export
qinf <- function(F,
p,
lower = -Inf,
upper = Inf,
tol = .Machine$double.eps^0.5,
max.iter = 1000L,
...) {
# 1. Input checks -----------------------------------------------------------
if (!is.function(F))
stop("'F' must be a function that evaluates a CDF")
if (!is.numeric(p))
stop("'p' must be numeric")
if (any(is.na(p))) # keep NA positions in the output
warning("NA probabilities supplied corresponding quantiles will be NA")
if (any(p < 0 | p > 1, na.rm = TRUE))
stop("probabilities must lie in [0,1]")
# 2. Helper function for a single probability ---------------------------------
one_quantile <- function(p_i) {
## Edge cases: 0 → leftmost point where F(x) >= 0,
## 1 → rightmost point where F(x) >= 1
if (is.na(p_i)) return(NA_real_)
if (p_i == 0) {
## The infimum of the set {x : F(x) >= 0} is the lower bound of the
## support. If the user gave a finite lower bound we return it,
## otherwise we try to locate it by moving left until F changes.
if (is.finite(lower)) return(lower)
## Search leftwards until we see a change in the CDF (or hit -Inf)
x <- 0
step <- 1
while (is.finite(x) && F(x, ...) == 0) {
x <- x - step
step <- step * 2
if (x < -1e12) break # give up treat as -Inf
}
return(x)
}
if (p_i == 1) {
if (is.finite(upper)) return(upper)
## Search rightwards until F reaches 1
x <- 0
step <- 1
while (is.finite(x) && F(x, ...) < 1) {
x <- x + step
step <- step * 2
if (x > 1e12) break
}
return(x)
}
## 2.1 Initialise the bracketing interval =================================
lo <- lower
hi <- upper
## If the interval is infinite we first try to find a finite bracket.
## This is done by exponential expansion from 0 (or from the sign of p)
## until the CDF straddles p.
if (!is.finite(lo) || !is.finite(hi)) {
# start from 0 (or any convenient point)
centre <- 0
# expand left if needed
if (!is.finite(lo)) {
step <- 1
while (F(centre - step, ...) >= p_i) step <- step * 2
lo <- centre - step
}
# expand right if needed
if (!is.finite(hi)) {
step <- 1
while (F(centre + step, ...) < p_i) step <- step * 2
hi <- centre + step
}
}
## 2.2 Bisection loop =====================================================
## we keep the leftmost point where F(q) >= p
iter <- 0L
while ((hi - lo) > tol && iter < max.iter) {
mid <- (lo + hi) / 2
fmid <- F(mid, ...)
if (is.na(fmid)) {
## If the CDF returns NA (e.g. because mid is outside the domain)
## we shrink the interval towards the side that is known to be
## finite.
if (is.finite(lo)) hi <- mid else lo <- mid
} else if (fmid >= p_i) {
## We have reached (or passed) the target probability move the
## upper bound leftwards to keep the *infimum*.
hi <- mid
} else {
## Still below the target move the lower bound rightwards.
lo <- mid
}
iter <- iter + 1L
}
## 2.3 Return the upper bound (the smallest x with F(x) >= p) =============
hi
}
# 3. Vectorised call preserve names / attributes of p ---------------------
out <- vapply(p, one_quantile, numeric(1), USE.NAMES = FALSE)
if (!is.null(names(p))) names(out) <- names(p)
out
}

192
R/singular_values.R Normal file
View File

@@ -0,0 +1,192 @@
# TODO improve later using the here package
source("R/graphon_distribution.R")
# 1. Compute the Matrix Q according to (3.1) -----------------------------------
#' Compute the matrix **Q**
#'
#' This helper builds the matrix \eqn{Q} that appears in equation(3.1) of the
#' graphonbased model. The routine performs the following steps:
#' 1. Checks that all inputs are of the correct type and dimension.
#' 2. Generates a covariate matrix \eqn{X} of size \eqn{n \times p} using the
#' usersupplied sampling function `sample_X_fn`. The random seed is
#' handled locally with **`withr::with_seed()`** so the global RNG state is
#' left untouched.
#' 3. Constructs the empirical conditional density of the latent variable
#' \eqn{v} via `create_cond_density()`.
#' 4. Computes the graphon quantiles \eqn{q_k} for a regular grid
#' \eqn{k = 0,1/K,\dots,1}` using the wrapper `qgraphon()`.
#' Each q_k is the quantile of k / K for k = 0, ..., K.
#' 5. Forms the matrix \eqn{Q} whose \eqn{(k,i)}th entry is
#' \deqn{F_v\!\bigl(q_{k+1} - a^\top X_i\bigr) -
#' F_v\!\bigl(q_{k} - a^\top X_i\bigr)},
#' where \eqn{F_v} is the CDF of the latent variable \eqn{v}. The
#' construction is fully vectorised: the outer difference is built with
#' `outer()`, the CDF is applied to the whole matrix at once, and the
#' rowwise differences are taken with `diff()`.
#'
#' @param seed Integer (or numeric) of length 1. Seed used to initialize the
#' random number generator for reproducible sampling of `X`.
#' @param a Numeric vector of length \eqn{p}. Coefficient vector that
#' multiplies the covariates; its length must equal the number of
#' columns of `X_matrix`.
#' @param n Positive integer. Number of i.i.d. covariate draws to be
#' generated.
#' @param K Positive integer. Number of divisions of the unit interval;
#' the resulting grid has length `K+1`.
#' @param sample_X_fn
#' Function with a single argument `n`. It must return an
#' \eqn{n \times p} matrix (or an object coercible to a matrix) of
#' covariate samples.
#' @param fv Density function of the latent variable \eqn{v}. Must be
#' vectorised (i.e. accept a numeric vector and return a numeric
#' vector of the same length). Typical examples are
#' `dnorm`, `dexp`, ….
#' @param Fv Cumulative distribution function of the latent variable
#' \eqn{v}. Also has to be vectorised. Typical examples are
#' `pnorm`, `pexp`, ….
#'
#' @return A numeric matrix **Q** of dimension `K × n`. The \eqn{j}-th row
#' (for `j = 1,…,K`) contains the increments of the CDF evaluated at
#' the graphon quantiles for each observation `i = 1,…,n`. The matrix
#' can be fed directly into downstream singularvalue or spectral
#' analyses.
#'
#' @details
#' * **Input validation** The function stops with an informative error if any
#' argument does not meet the required type or dimension constraints.
#' * **Reproducible sampling** `withr::with_seed()` guarantees that the seed
#' is restored after the call, leaving the user's global RNG untouched.
#' * **Vectorised construction of Q**
#' \preformatted{
#' adotX <- as.vector(X %*% a) # nvector
#' cdf_mat <- Fv(outer(graphon_quantiles, adotX, "-")) # (K+1) × n
#' Q <- diff(cdf_mat, lag = 1) # K × n
#' }
#' This replaces the double `for`loop in the original implementation and
#' yields a speedup of roughly an order of magnitude for moderatesize
#' problems.
#'
#' @seealso
#' \code{\link{create_cond_density}} for the construction of the empirical
#' conditional density,
#' \code{\link{qgraphon}} for the quantile computation,
#' \code{\link{compute_extreme_singular_values}} for a wrapper that also
#' returns the smallest and largest singular values of `Q`.
#'
#' @examples
#' ## Simple reproducible example ------------------------------------------------
#' set.seed(123)
#' ## a sampling function that returns a 2dimensional covariate matrix
#' sample_X <- function(m) matrix(rnorm(m * 2), ncol = 2)
#'
#' ## Compute Q for a normal latent variable
#' Q <- compute_matrix(
#' seed = 42,
#' a = c(1, -0.5),
#' n = 200,
#' K = 100,
#' sample_X_fn = sample_X,
#' fv = dnorm,
#' Fv = pnorm
#' )
#' dim(Q) # should be 100 × 200
#' head(Q) # a glimpse at the first few rows
#'
#' @export
compute_matrix <- function(
seed,
a,
n,
K,
sample_X_fn,
fv,
Fv
) {
## 1.1 Check inputs ==========================================================
if (!is.numeric(seed) || length(seed) != 1) stop("'seed' must be a single number")
if (!is.numeric(a) || !is.vector(a)) stop("'a' must be a numeric vector")
if (!is.numeric(n) || length(n) != 1 || n <= 0) stop("'n' must be a positive integer")
if (!is.numeric(K) || length(K) != 1 || K <= 0) stop("'K' must be a positive integer")
if (!is.function(sample_X_fn)) stop("'sample_X_fn' must be a function")
if (!is.function(fv)) stop("'f_v' must be a function")
if (!is.function(Fv)) stop("'F_v' must be a function")
## 1.2 Generate the Matrix X of covariates ===================================
# The withr environment allows us to capsulate the global state like the seed
# and enables a better reproduction
X <- withr::with_seed(seed, {
as.matrix(sample_X_fn(n))
})
if (nrow(X) != n) stop("`sample_X_fn` must return exactly `n` rows")
if (ncol(X) != length(a)) {
stop("Number of columns of X (", ncol(X), ") must equal length(a) (", length(a), ")")
}
## 1.3 Create conditional density ============================================
empir_cond_density <- create_cond_density(a, fv, Fv, X)
## 1.4 Compute the graphon quantiles =========================================
k <- seq(0, K) / K
graphon_quantiles <- qgraphon(k, a = a, Fv = Fv, X_matrix = X)
## 1.5 Build the matrix Q ====================================================
inner_products = as.vector(X %*% a)
# outer(y, x, "-") gives a matrix with entry (j,i) = y[j] - x[i]
# then we apply the CDF `F_v` to the whole matrix at once.
# finally we take the difference of successive rows (j) to obtain the
# increments required by equation (3.1).
cdf_mat <- Fv(outer(graphon_quantiles, inner_products, "-")) # (K +1) x n matrix
Q <- diff(cdf_mat, lag=1) # operates along rows
Q
}
# 2. Compute largest and smallest singular value -------------------------------
# TODO: Possible improvements include
# - use the package RSpectra for large dimensions
# - make a switch which value to choose
# - Include cards for very small singular values
#' Compute the largest and smallest singular values of a matrix
#'
#' This helper extracts the extreme singular values of a numeric matrix.
#' It uses the baseR \code{svd()} routine (with the singular vectors
#' suppressed) and returns a list containing the largest singular value and
#' the smallest (nonzero) singular value.
#'
#' @param M A numeric matrix (or an object coercible to a matrix). The
#' singular values are computed for this matrix.
#'
#' @return A **list** with two components
#' \describe{
#' \item{largest_singular_value}{The maximum singular value of \code{M}.}
#' \item{smallest_singular_value}{The minimum singular value of \code{M}
#' that is greater than zero. If all singular values are zero,
#' the function returns \code{0}.}
#' }
#'
#' @details
#' The singular value decomposition is performed with \code{svd(M, nu = 0,
#' nv = 0)} so that only the singular values (\code{$d}) are computed; this
#' saves memory because the left and right singular vectors are not needed.
#'
#' @examples
#' ## Small random matrix ----------------------------------------------------
#' set.seed(123)
#' A <- matrix(rnorm(20), nrow = 4)
#' compute_minmax_sv(A)
#'
#' ## Rankdeficient matrix (all singular values are zero) --------------------
#' Z <- matrix(0, nrow = 3, ncol = 3)
#' compute_minmax_sv(Z)
#'
#' @export
compute_minmax_sv <- function(M) {
s <- svd(M, nu=0, nv=0)$d
list(
largest_singular_value = max(s),
smallest_singular_value = min(s) # smallest non zero singular value
)
}

68
renv.lock Normal file
View File

@@ -0,0 +1,68 @@
{
"R": {
"Version": "4.5.1",
"Repositories": [
{
"Name": "CRAN",
"URL": "https://cloud.r-project.org"
}
]
},
"Packages": {
"renv": {
"Package": "renv",
"Version": "1.1.6",
"Source": "Repository",
"Type": "Package",
"Title": "Project Environments",
"Authors@R": "c( person(\"Kevin\", \"Ushey\", role = c(\"aut\", \"cre\"), email = \"kevin@rstudio.com\", comment = c(ORCID = \"0000-0003-2880-7407\")), person(\"Hadley\", \"Wickham\", role = c(\"aut\"), email = \"hadley@rstudio.com\", comment = c(ORCID = \"0000-0003-4757-117X\")), person(\"Posit Software, PBC\", role = c(\"cph\", \"fnd\")) )",
"Description": "A dependency management toolkit for R. Using 'renv', you can create and manage project-local R libraries, save the state of these libraries to a 'lockfile', and later restore your library as required. Together, these tools can help make your projects more isolated, portable, and reproducible.",
"License": "MIT + file LICENSE",
"URL": "https://rstudio.github.io/renv/, https://github.com/rstudio/renv",
"BugReports": "https://github.com/rstudio/renv/issues",
"Imports": [
"utils"
],
"Suggests": [
"BiocManager",
"cli",
"compiler",
"covr",
"cpp11",
"curl",
"devtools",
"generics",
"gitcreds",
"jsonlite",
"jsonvalidate",
"knitr",
"miniUI",
"modules",
"packrat",
"pak",
"R6",
"remotes",
"reticulate",
"rmarkdown",
"rstudioapi",
"shiny",
"testthat",
"uuid",
"waldo",
"yaml",
"webfakes"
],
"Encoding": "UTF-8",
"RoxygenNote": "7.3.3",
"VignetteBuilder": "knitr",
"Config/Needs/website": "tidyverse/tidytemplate",
"Config/testthat/edition": "3",
"Config/testthat/parallel": "true",
"Config/testthat/start-first": "bioconductor,python,install,restore,snapshot,retrieve,remotes",
"NeedsCompilation": "no",
"Author": "Kevin Ushey [aut, cre] (ORCID: <https://orcid.org/0000-0003-2880-7407>), Hadley Wickham [aut] (ORCID: <https://orcid.org/0000-0003-4757-117X>), Posit Software, PBC [cph, fnd]",
"Maintainer": "Kevin Ushey <kevin@rstudio.com>",
"Repository": "CRAN"
}
}
}

7
renv/.gitignore vendored Normal file
View File

@@ -0,0 +1,7 @@
library/
local/
cellar/
lock/
python/
sandbox/
staging/

1403
renv/activate.R Normal file

File diff suppressed because it is too large Load Diff

20
renv/settings.json Normal file
View File

@@ -0,0 +1,20 @@
{
"bioconductor.version": null,
"external.libraries": [],
"ignored.packages": [],
"package.dependency.fields": [
"Imports",
"Depends",
"LinkingTo"
],
"ppm.enabled": null,
"ppm.ignored.urls": [],
"r.version": null,
"snapshot.dev": false,
"snapshot.type": "implicit",
"use.cache": true,
"vcs.ignore.cellar": true,
"vcs.ignore.library": true,
"vcs.ignore.local": true,
"vcs.manage.ignores": true
}