|
|
|
@ -5,8 +5,8 @@ Bestimme in jedem Falle, ob φ linear ist.
|
|
|
|
|
|
|
|
|
|
a) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 4·x1·x3 ) |
|
|
|
|
( 10·x2 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 4·x₁·x₃ ) |
|
|
|
|
( 10·x₂ ) |
|
|
|
|
|
|
|
|
|
Wenn φ linear wäre, dann müsste φ(2, 0, 2) = 2·φ(1, 0, 1) gelten. |
|
|
|
|
Aber: |
|
|
|
@ -18,8 +18,8 @@ Also ist φ nicht linear, weil Homogenität verletzt wird.
|
|
|
|
|
|
|
|
|
|
b) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( x3² ) |
|
|
|
|
( 0 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( x₃² ) |
|
|
|
|
( 0 ) |
|
|
|
|
|
|
|
|
|
Wenn φ linear wäre, dann müsste φ(0, 0, 8) = 8·φ(0, 0, 1) gelten. |
|
|
|
|
Aber: |
|
|
|
@ -31,21 +31,21 @@ Also ist φ nicht linear, weil Homogenität verletzt wird.
|
|
|
|
|
|
|
|
|
|
c) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( x3 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( x₃ ) |
|
|
|
|
( 0 ) |
|
|
|
|
|
|
|
|
|
--> linear |
|
|
|
|
|
|
|
|
|
d) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 0 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 0 ) |
|
|
|
|
( 0 ) |
|
|
|
|
|
|
|
|
|
--> linear |
|
|
|
|
|
|
|
|
|
e) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 4 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 4 ) |
|
|
|
|
( 0 ) |
|
|
|
|
|
|
|
|
|
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] |
|
|
|
@ -54,15 +54,15 @@ Also ist φ nicht linear.
|
|
|
|
|
|
|
|
|
|
f) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 10·x3 ) |
|
|
|
|
( -x2 + x1 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 10·x₃ ) |
|
|
|
|
( -x₂ + x₁ ) |
|
|
|
|
|
|
|
|
|
linear! |
|
|
|
|
|
|
|
|
|
g) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 1 - 10·x3 ) |
|
|
|
|
( -x2 + x1 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 1 - 10·x₃ ) |
|
|
|
|
( -x₂ + x₁ ) |
|
|
|
|
|
|
|
|
|
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] |
|
|
|
|
Aber φ(0) = (1, 0)ᵀ. |
|
|
|
@ -70,7 +70,7 @@ Also ist φ nicht linear.
|
|
|
|
|
|
|
|
|
|
h) |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( exp(-(7·x2 + 8·x1)) ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( exp(-(7·x₂ + 8·x₁)) ) |
|
|
|
|
( 0 ) |
|
|
|
|
|
|
|
|
|
Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] |
|
|
|
@ -79,15 +79,15 @@ Also ist φ nicht linear.
|
|
|
|
|
|
|
|
|
|
## §2. Aufgaben ähnlich zu ÜB 10-2 ## |
|
|
|
|
|
|
|
|
|
Seien A = (u1, u2, u3) und B = (v1, v2), |
|
|
|
|
Seien A = (u₁, u₂, u₃) und B = (v₁, v₂), |
|
|
|
|
wobei |
|
|
|
|
|
|
|
|
|
u1 = (3, 0, 1)ᵀ |
|
|
|
|
u2 = (0, -1, 0)ᵀ |
|
|
|
|
u3 = (4, 0, 0)ᵀ |
|
|
|
|
u₁ = (3, 0, 1)ᵀ |
|
|
|
|
u₂ = (0, -1, 0)ᵀ |
|
|
|
|
u₃ = (4, 0, 0)ᵀ |
|
|
|
|
|
|
|
|
|
v1 = (4, 5)ᵀ |
|
|
|
|
v2 = (0, 1)ᵀ |
|
|
|
|
v₁ = (4, 5)ᵀ |
|
|
|
|
v₂ = (0, 1)ᵀ |
|
|
|
|
|
|
|
|
|
Beachte: |
|
|
|
|
|
|
|
|
@ -96,33 +96,33 @@ Beachte:
|
|
|
|
|
|
|
|
|
|
Sei nun φ : ℝ³ ⟶ ℝ² definiert durch |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 4·x1 - x3 ) |
|
|
|
|
( 10·x2 + x1 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 4·x₁ - x₃ ) |
|
|
|
|
( 10·x₂ + x₁ ) |
|
|
|
|
|
|
|
|
|
### Zur Linearität ### |
|
|
|
|
Seien |
|
|
|
|
|
|
|
|
|
(x1,x2,x3), (x1',x2',x3') ∈ ℝ³ |
|
|
|
|
(x₁,x₂,x₃), (x₁',x₂',x₃') ∈ ℝ³ |
|
|
|
|
c, c' ∈ ℝ |
|
|
|
|
|
|
|
|
|
**Zu zeigen:** |
|
|
|
|
φ(c(x1, x2, x3) +c'(x1',x2',x3')) = c·φ(x1, x2, x3) +c'·φ(x1',x2',x3') |
|
|
|
|
φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃')) = c·φ(x₁, x₂, x₃) +c'·φ(x₁', x₂', x₃') |
|
|
|
|
|
|
|
|
|
Es gilt |
|
|
|
|
|
|
|
|
|
l. S. = φ(c(x1, x2, x3) +c'(x1',x2',x3')) |
|
|
|
|
= φ(c(x1·e1 + x2·e2 + x3·e3) +c'(x1'·e1 + x2'·e2 + x3'·e3)) |
|
|
|
|
= φ((c·x1 + c'·x1)·e1 + (c·x2 + c'·x2)·e2 + (c·x3 + c'·x3)·e3) |
|
|
|
|
= φ(c·x1 + c'·x1', c·x2 + c'·x2', c·x3 + c'·x3') |
|
|
|
|
l. S. = φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃')) |
|
|
|
|
= φ(c(x₁·e1 + x₂·e2 + x₃·e3) +c'(x₁'·e1 + x₂'·e2 + x₃'·e3)) |
|
|
|
|
= φ((c·x₁ + c'·x₁)·e1 + (c·x₂ + c'·x₂)·e2 + (c·x₃ + c'·x₃)·e3) |
|
|
|
|
= φ(c·x₁ + c'·x₁', c·x₂ + c'·x₂', c·x₃ + c'·x₃') |
|
|
|
|
|
|
|
|
|
= ( 4·(c·x1 + c'·x1') - (c·x3 + c'·x3') ) |
|
|
|
|
( 10·(c·x2 + c'·x2') + (c·x1 + c'·x1') ) |
|
|
|
|
= ( 4·(c·x₁ + c'·x₁') - (c·x₃ + c'·x₃') ) |
|
|
|
|
( 10·(c·x₂ + c'·x₂') + (c·x₁ + c'·x₁') ) |
|
|
|
|
|
|
|
|
|
= ( c·(4·x1 - x3) + c'·(4·x1' - x3') ) |
|
|
|
|
( c·(10·x2 + x1) + c'·(10·x2' + x1') ) |
|
|
|
|
= ( c·(4·x₁ - x₃) + c'·(4·x₁' - x₃') ) |
|
|
|
|
( c·(10·x₂ + x₁) + c'·(10·x₂' + x₁') ) |
|
|
|
|
|
|
|
|
|
= c·( 4·x1 - x3 ) + c'·( 4·x1' - x3' ) |
|
|
|
|
( 10·x2 + x1 ) ( 10·x2' + x1' ) |
|
|
|
|
= c·( 4·x₁ - x₃ ) + c'·( 4·x₁' - x₃' ) |
|
|
|
|
( 10·x₂ + x₁ ) ( 10·x₂' + x₁' ) |
|
|
|
|
|
|
|
|
|
= r. S. |
|
|
|
|
|
|
|
|
@ -131,9 +131,9 @@ Darum ist φ linear.
|
|
|
|
|
### Darstellung ### |
|
|
|
|
Zunächst beobachten wir: |
|
|
|
|
|
|
|
|
|
φ(x1, x2, x3) = ( 4 0 -1 ) ( x1 ) |
|
|
|
|
( 1 10 0 ) ( x2 ) |
|
|
|
|
( x3 ) |
|
|
|
|
φ(x₁, x₂, x₃) = ( 4 0 -1 ) ( x₁ ) |
|
|
|
|
( 1 10 0 ) ( x₂ ) |
|
|
|
|
( x₃ ) |
|
|
|
|
= C·x |
|
|
|
|
= φ_C(x) siehe [Skript, Bsp 6.2.2], |
|
|
|
|
|
|
|
|
@ -204,13 +204,14 @@ Darum gilt
|
|
|
|
|
|
|
|
|
|
## §3. Lineare Fortsetzung von partiell definierten Funktionen ## |
|
|
|
|
|
|
|
|
|
Sei φ : ℝ^5 ⟶ ℝ³ |
|
|
|
|
Sei φ : ℝ⁵ ⟶ ℝ³ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Seien u1, u2, u3, u4, u5 eine Basis für ℝ^5. |
|
|
|
|
Seien u₁, u₂, u₃, u₄, u₅ eine Basis für ℝ⁵. |
|
|
|
|
Seien v₁, v₂, v₃ Vektoren in ℝ³. |
|
|
|
|
Definiert werden |
|
|
|
|
|
|
|
|
|
φ(u1) = v1, φ(u2) = v2, φ(u4) = v3 |
|
|
|
|
φ(u₁) = v₁, φ(u₂) = v₂, φ(u₄) = v₃ |
|
|
|
|
|
|
|
|
|
**Aufgabe:** Gibt es eine lineare Abbildung, die die o. s. Gleichungen erfüllen? |
|
|
|
|
|
|
|
|
@ -218,11 +219,11 @@ Definiert werden
|
|
|
|
|
|
|
|
|
|
**Beweis:** |
|
|
|
|
Setze |
|
|
|
|
φ(u3) := 0 (Nullvektor) |
|
|
|
|
φ(u5) := 0 (Nullvektor) |
|
|
|
|
φ(u₃) := 0 (Nullvektor) |
|
|
|
|
φ(u₅) := 0 (Nullvektor) |
|
|
|
|
|
|
|
|
|
Da u1, u2, u3, u4, u5 eine Basis ist, |
|
|
|
|
können wir für belieges x ∈ ℝ^5 |
|
|
|
|
Da u₁, u₂, u₃, u₄, u₅ eine Basis ist, |
|
|
|
|
können wir für beliebiges x ∈ ℝ⁵ |
|
|
|
|
|
|
|
|
|
φ(x) = ∑ c_i · φ(ui) |
|
|
|
|
|
|
|
|
|