master > master: Formattierung
This commit is contained in:
		
							parent
							
								
									e753621a96
								
							
						
					
					
						commit
						d9414f2779
					
				| @ -5,8 +5,8 @@ Bestimme in jedem Falle, ob φ linear ist. | ||||
| 
 | ||||
| a) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 4·x1·x3 ) | ||||
|                     ( 10·x2   ) | ||||
|     φ(x₁, x₂, x₃) = ( 4·x₁·x₃ ) | ||||
|                     ( 10·x₂   ) | ||||
| 
 | ||||
| Wenn φ linear wäre, dann müsste φ(2, 0, 2) = 2·φ(1, 0, 1) gelten. | ||||
| Aber: | ||||
| @ -18,8 +18,8 @@ Also ist φ nicht linear, weil Homogenität verletzt wird. | ||||
| 
 | ||||
| b) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( x3² ) | ||||
|                     (  0   ) | ||||
|     φ(x₁, x₂, x₃) = ( x₃² ) | ||||
|                     (  0  ) | ||||
| 
 | ||||
| Wenn φ linear wäre, dann müsste φ(0, 0, 8) = 8·φ(0, 0, 1) gelten. | ||||
| Aber: | ||||
| @ -31,21 +31,21 @@ Also ist φ nicht linear, weil Homogenität verletzt wird. | ||||
| 
 | ||||
| c) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( x3 ) | ||||
|     φ(x₁, x₂, x₃) = ( x₃ ) | ||||
|                     (  0 ) | ||||
| 
 | ||||
| --> linear | ||||
| 
 | ||||
| d) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 0 ) | ||||
|     φ(x₁, x₂, x₃) = ( 0 ) | ||||
|                     ( 0 ) | ||||
| 
 | ||||
| --> linear | ||||
| 
 | ||||
| e) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 4  ) | ||||
|     φ(x₁, x₂, x₃) = ( 4  ) | ||||
|                     ( 0  ) | ||||
| 
 | ||||
| Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] | ||||
| @ -54,15 +54,15 @@ Also ist φ nicht linear. | ||||
| 
 | ||||
| f) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 10·x3     ) | ||||
|                     (  -x2 + x1 ) | ||||
|     φ(x₁, x₂, x₃) = ( 10·x₃     ) | ||||
|                     (  -x₂ + x₁ ) | ||||
| 
 | ||||
| linear! | ||||
| 
 | ||||
| g) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 1 - 10·x3 ) | ||||
|                     (  -x2 + x1 ) | ||||
|     φ(x₁, x₂, x₃) = ( 1 - 10·x₃ ) | ||||
|                     (  -x₂ + x₁ ) | ||||
| 
 | ||||
| Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] | ||||
| Aber φ(0) = (1, 0)ᵀ. | ||||
| @ -70,7 +70,7 @@ Also ist φ nicht linear. | ||||
| 
 | ||||
| h) | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( exp(-(7·x2 + 8·x1)) ) | ||||
|     φ(x₁, x₂, x₃) = ( exp(-(7·x₂ + 8·x₁)) ) | ||||
|                     ( 0                   ) | ||||
| 
 | ||||
| Wenn φ linear wäre, dann müsste φ(0) = 0 gelten. [Siehe Lemma 6.1.2] | ||||
| @ -79,15 +79,15 @@ Also ist φ nicht linear. | ||||
| 
 | ||||
| ## §2. Aufgaben ähnlich zu ÜB 10-2 ## | ||||
| 
 | ||||
| Seien A = (u1, u2, u3) und B = (v1, v2), | ||||
| Seien A = (u₁, u₂, u₃) und B = (v₁, v₂), | ||||
| wobei | ||||
| 
 | ||||
|     u1 = (3,  0, 1)ᵀ | ||||
|     u2 = (0, -1, 0)ᵀ | ||||
|     u3 = (4,  0, 0)ᵀ | ||||
|     u₁ = (3,  0, 1)ᵀ | ||||
|     u₂ = (0, -1, 0)ᵀ | ||||
|     u₃ = (4,  0, 0)ᵀ | ||||
| 
 | ||||
|     v1 = (4, 5)ᵀ | ||||
|     v2 = (0, 1)ᵀ | ||||
|     v₁ = (4, 5)ᵀ | ||||
|     v₂ = (0, 1)ᵀ | ||||
| 
 | ||||
| Beachte: | ||||
| 
 | ||||
| @ -96,33 +96,33 @@ Beachte: | ||||
| 
 | ||||
| Sei nun φ : ℝ³ ⟶ ℝ² definiert durch | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 4·x1 - x3  ) | ||||
|                     ( 10·x2 + x1 ) | ||||
|     φ(x₁, x₂, x₃) = ( 4·x₁ - x₃  ) | ||||
|                     ( 10·x₂ + x₁ ) | ||||
| 
 | ||||
| ### Zur Linearität ### | ||||
| Seien | ||||
| 
 | ||||
|     (x1,x2,x3), (x1',x2',x3') ∈ ℝ³ | ||||
|     (x₁,x₂,x₃), (x₁',x₂',x₃') ∈ ℝ³ | ||||
|     c, c' ∈ ℝ | ||||
| 
 | ||||
| **Zu zeigen:** | ||||
|     φ(c(x1, x2, x3) +c'(x1',x2',x3')) = c·φ(x1, x2, x3) +c'·φ(x1',x2',x3') | ||||
|     φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃')) = c·φ(x₁, x₂, x₃) +c'·φ(x₁', x₂', x₃') | ||||
| 
 | ||||
| Es gilt | ||||
| 
 | ||||
|     l. S. = φ(c(x1, x2, x3) +c'(x1',x2',x3')) | ||||
|           = φ(c(x1·e1 + x2·e2 + x3·e3) +c'(x1'·e1 + x2'·e2 + x3'·e3)) | ||||
|           = φ((c·x1 + c'·x1)·e1 + (c·x2 + c'·x2)·e2 + (c·x3 + c'·x3)·e3) | ||||
|           = φ(c·x1 + c'·x1', c·x2 + c'·x2', c·x3 + c'·x3') | ||||
|     l. S. = φ(c(x₁, x₂, x₃) +c'(x₁',x₂',x₃')) | ||||
|           = φ(c(x₁·e1 + x₂·e2 + x₃·e3) +c'(x₁'·e1 + x₂'·e2 + x₃'·e3)) | ||||
|           = φ((c·x₁ + c'·x₁)·e1 + (c·x₂ + c'·x₂)·e2 + (c·x₃ + c'·x₃)·e3) | ||||
|           = φ(c·x₁ + c'·x₁', c·x₂ + c'·x₂', c·x₃ + c'·x₃') | ||||
| 
 | ||||
|           = ( 4·(c·x1 + c'·x1') - (c·x3 + c'·x3')  ) | ||||
|             ( 10·(c·x2 + c'·x2') + (c·x1 + c'·x1') ) | ||||
|           = ( 4·(c·x₁ + c'·x₁') - (c·x₃ + c'·x₃')  ) | ||||
|             ( 10·(c·x₂ + c'·x₂') + (c·x₁ + c'·x₁') ) | ||||
| 
 | ||||
|           = ( c·(4·x1 - x3)  + c'·(4·x1' - x3')  ) | ||||
|             ( c·(10·x2 + x1) + c'·(10·x2' + x1') ) | ||||
|           = ( c·(4·x₁ - x₃)  + c'·(4·x₁' - x₃')  ) | ||||
|             ( c·(10·x₂ + x₁) + c'·(10·x₂' + x₁') ) | ||||
| 
 | ||||
|           = c·( 4·x1 - x3  ) + c'·( 4·x1' - x3' ) | ||||
|               ( 10·x2 + x1 )      ( 10·x2' + x1' ) | ||||
|           = c·( 4·x₁ - x₃  ) + c'·( 4·x₁' - x₃' ) | ||||
|               ( 10·x₂ + x₁ )      ( 10·x₂' + x₁' ) | ||||
| 
 | ||||
|           = r. S. | ||||
| 
 | ||||
| @ -131,9 +131,9 @@ Darum ist φ linear. | ||||
| ### Darstellung ### | ||||
| Zunächst beobachten wir: | ||||
| 
 | ||||
|     φ(x1, x2, x3) = ( 4   0   -1 ) ( x1 ) | ||||
|                     ( 1   10   0 ) ( x2 ) | ||||
|                                    ( x3 ) | ||||
|     φ(x₁, x₂, x₃) = ( 4   0   -1 ) ( x₁ ) | ||||
|                     ( 1   10   0 ) ( x₂ ) | ||||
|                                    ( x₃ ) | ||||
|                   = C·x | ||||
|                   = φ_C(x)   siehe [Skript, Bsp 6.2.2], | ||||
| 
 | ||||
| @ -204,13 +204,14 @@ Darum gilt | ||||
| 
 | ||||
| ## §3. Lineare Fortsetzung von partiell definierten Funktionen ## | ||||
| 
 | ||||
| Sei φ : ℝ^5 ⟶ ℝ³ | ||||
| Sei φ : ℝ⁵ ⟶ ℝ³ | ||||
| 
 | ||||
| 
 | ||||
| Seien u1, u2, u3, u4, u5 eine Basis für ℝ^5. | ||||
| Seien u₁, u₂, u₃, u₄, u₅ eine Basis für ℝ⁵. | ||||
| Seien v₁, v₂, v₃ Vektoren in ℝ³. | ||||
| Definiert werden | ||||
| 
 | ||||
|     φ(u1) = v1, φ(u2) = v2, φ(u4) = v3 | ||||
|     φ(u₁) = v₁, φ(u₂) = v₂, φ(u₄) = v₃ | ||||
| 
 | ||||
| **Aufgabe:** Gibt es eine lineare Abbildung, die die o. s. Gleichungen erfüllen? | ||||
| 
 | ||||
| @ -218,11 +219,11 @@ Definiert werden | ||||
| 
 | ||||
| **Beweis:** | ||||
| Setze | ||||
|         φ(u3) := 0 (Nullvektor) | ||||
|         φ(u5) := 0 (Nullvektor) | ||||
|         φ(u₃) := 0 (Nullvektor) | ||||
|         φ(u₅) := 0 (Nullvektor) | ||||
| 
 | ||||
| Da u1, u2, u3, u4, u5 eine Basis ist, | ||||
| können wir für belieges x ∈ ℝ^5 | ||||
| Da u₁, u₂, u₃, u₄, u₅ eine Basis ist, | ||||
| können wir für beliebiges x ∈ ℝ⁵ | ||||
| 
 | ||||
|     φ(x) = ∑ c_i · φ(ui) | ||||
| 
 | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user