master > master: ÜB5
This commit is contained in:
		
							parent
							
								
									2a79c5d282
								
							
						
					
					
						commit
						f0e44382b3
					
				
										
											Binary file not shown.
										
									
								
							| @ -53,6 +53,14 @@ | ||||
| %%            | | ||||
| %%            — body/uebung/ueb4.tex; | ||||
| %%            | | ||||
| %%            — body/uebung/ueb5.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska1.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska2.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska3.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska4.tex; | ||||
| %%            | | ||||
| %%            — body/ska/ska5.tex; | ||||
| @ -64,6 +72,8 @@ | ||||
| %%            — body/quizzes/quiz3.tex; | ||||
| %%            | | ||||
| %%            — body/quizzes/quiz4.tex; | ||||
| %%            | | ||||
| %%            — body/quizzes/quiz5.tex; | ||||
| %%        | | ||||
| %%        — back/index.tex; | ||||
| %%            | | ||||
| @ -1301,6 +1311,10 @@ | ||||
| \def\ntrlzero{\mathbb{N}_{0}} | ||||
| \def\reellNonNeg{\reell_{+}} | ||||
| 
 | ||||
| \def\imageinh{\imath} | ||||
| \def\ReTeil{\mathop{\mathfrak{R}\text{\upshape e}}} | ||||
| \def\ImTeil{\mathop{\mathfrak{I}\text{\upshape m}}} | ||||
| 
 | ||||
| \def\leer{\emptyset} | ||||
| \def\restr#1{\vert_{#1}} | ||||
| \def\ohne{\setminus} | ||||
| @ -3535,11 +3549,249 @@ für $a,b\in\intgr$. | ||||
|         Darum gilt $\Phi(n)$ per Induktion für alle $n\in\ntrl$. | ||||
|     \end{proof} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/uebung/ueb5.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| \setcounternach{chapter}{5} | ||||
| \chapter[Woche 5]{Woche 5} | ||||
|     \label{ueb:5} | ||||
| 
 | ||||
| \textbf{ACHTUNG.} | ||||
| Diese Lösungen dienen \emph{nicht} als Musterlösungen sondern eher als Referenz. | ||||
| Hier wird eingehender gearbeitet, als generell verlangt wird. | ||||
| Das Hauptziel hier ist, eine Variant anzubieten, gegen die man seine Versuche vergleichen kann. | ||||
| 
 | ||||
| %% AUFGABE 5-1 | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 1]{} | ||||
|     \label{ueb:5:ex:1} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
| Fixiere eine natürliche Zahl $n\in\ntrlzero$. | ||||
| Sei $a_{i}\in\{0,1,\ldots,10-1\}$ die eindeutige Zahlen, | ||||
| so dass | ||||
| 
 | ||||
|     \begin{mathe}[mc]{rcl} | ||||
|         n &= &\sum_{i\in\ntrlzero}a_{i}10^{i}\\ | ||||
|     \end{mathe} | ||||
| 
 | ||||
| gilt. | ||||
| 
 | ||||
| \begin{enumerate}{\bfseries (a)} | ||||
|     %% AUFGABE 5-1a | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             $3\divides n$ $\Leftrightarrow$ $3\mid\sum_{i\in\ntrlzero}a_{i}$. | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             Beachte zunächst, dass $10\equiv 1\mod 3$. | ||||
|             Also gilt modulo $3$ | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccl} | ||||
|                     n &\equiv &\sum_{i\in\ntrlzero}a_{i}1^{i} &\equiv &\sum_{i\in\ntrlzero}a_{i}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Folglich gilt | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     3\mid n | ||||
|                         &\Longleftrightarrow | ||||
|                             &n\equiv 0\mod 3 | ||||
|                         &\Longleftrightarrow | ||||
|                             &\sum_{i\in\ntrlzero}a_{i}\equiv 0\mod 3 | ||||
|                         &\Longleftrightarrow | ||||
|                             &3\mid\sum_{i\in\ntrlzero}a_{i} | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             wie behauptet. | ||||
|         \end{proof} | ||||
| 
 | ||||
|     %% AUFGABE 5-1b | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             $11\divides n$ $\Leftrightarrow$ $1\mid\sum_{i\in\ntrlzero}(-1)^{i}a_{i}$. | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             Beachte zunächst, dass $10=-1\mod 11$. | ||||
|             Also gilt modulo $11$ | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccl} | ||||
|                     n &\equiv &\sum_{i\in\ntrlzero}a_{i}(-1)^{i}.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Folglich gilt | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     11\mid n | ||||
|                         &\Longleftrightarrow | ||||
|                             &n\equiv 0\mod 11 | ||||
|                         &\Longleftrightarrow | ||||
|                             &\sum_{i\in\ntrlzero}a_{i}\equiv 0\mod 11 | ||||
|                         &\Longleftrightarrow | ||||
|                             &11\mid\sum_{i\in\ntrlzero}(-1)^{i}a_{i} | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             wie behauptet. | ||||
|         \end{proof} | ||||
| \end{enumerate} | ||||
| 
 | ||||
| %% AUFGABE 5-2 | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 2]{} | ||||
|     \label{ueb:5:ex:2} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
| \begin{enumerate}{\bfseries (a)} | ||||
|     %% AUFGABE 5-2a | ||||
|     \item | ||||
| 
 | ||||
|         Seien $a=142$ und $b=84$. | ||||
|         Wir berechnen $\ggT(a,b)$ mittels des Euklidischen Algorithmus | ||||
|         (siehe \cite[Satz 3.4.7]{sinn2020}). | ||||
| 
 | ||||
|         \begin{longtable}[mc]{|c|c|} | ||||
|             \hline | ||||
|             \hline | ||||
|                 Restberechnung (symbolisch) &Restberechnung (Werte)\\ | ||||
|             \hline | ||||
|             \endhead | ||||
|                     $a = b\cdot q_{1} + r_{1}$ &$142 = 84\cdot 1 + 58$\\ | ||||
|                     $b = r_{1}\cdot q_{2} + r_{2}$ &$84 = 58\cdot 1 + 26$\\ | ||||
|                     $r_{1} = r_{2}\cdot q_{3} + r_{3}$ &$58 = 26\cdot 2 + 6$\\ | ||||
|                     $r_{2} = r_{3}\cdot q_{4} + r_{4}$ &$26 = 6\cdot 4 + \boxed{\mathbf{2}}$\\ | ||||
|                     $r_{3} = r_{4}\cdot q_{5} + r_{5}$ &$6 = 2\cdot 3 + 0$\\ | ||||
|             \hline | ||||
|             \hline | ||||
|         \end{longtable} | ||||
| 
 | ||||
|         Darum gilt $\ggT(a,b)=r_{2}=2$. | ||||
| 
 | ||||
|     %% AUFGABE 5-2b | ||||
|     \item | ||||
| 
 | ||||
|         \begin{claim} | ||||
|             \makelabel{claim:main:ueb:5:ex:2b} | ||||
|             Seien $a,b,c\in\intgr$ mit $a,b\neq 0$. | ||||
|             Die folgenden Aussagen sind äquivalent: | ||||
| 
 | ||||
|                 \begin{kompaktenum}{\bfseries (i)}[\rtab][\rtab] | ||||
|                     \item\punktlabel{1} | ||||
|                         $\exists{x,y\in\intgr:~}ax+by=c$ | ||||
|                     \item\punktlabel{2} | ||||
|                         $\ggT(a,b)\divides c$ | ||||
|                 \end{kompaktenum} | ||||
| 
 | ||||
|         \end{claim} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             Fixiere zunächst $d:=\ggT(a,b)$. | ||||
|             Da $a,b\in\intgr\ohne\{0\}$, ist $d\in\ntrl$ eine wohldefinierte positive Zahl. | ||||
| 
 | ||||
|             \hinRichtung{1}{2} | ||||
|                 Angenommen, $ax+by=c$ für ein $x,y\in\intgr$.\\ | ||||
|                 Da $x,y\in\intgr$, | ||||
|                 erhalten wir $c=ax+by\equiv 0x+0z\equiv 0$ modulo $d$.\\ | ||||
|                 Also $\ggT(a,b)=d\divides c$. | ||||
| 
 | ||||
|             \hinRichtung{2}{1} | ||||
|                 Angenommen, $\ggT(a,b)\divides c$.\\ | ||||
|                 Dann existiert ein $k\in\intgr$, so dass $c=k\cdot\ggT(a,b)$.\\ | ||||
|                 Laut des Lemmas von B\'ezout (siehe \cite[Lemma 3.4.8]{sinn2020}) | ||||
|                 existiere nun $u,v\in\intgr$, so dass $\ggT(a,b)=au+bv$.\\ | ||||
|                 Daraus folgt ${c=k\cdot\ggT(a,b)=aku+bkv}$.\\ | ||||
|                 Da $ku,kv\in\intgr$, haben wir \punktcref{1} bewiesen. | ||||
|         \end{proof} | ||||
| \end{enumerate} | ||||
| 
 | ||||
| %% AUFGABE 5-3 | ||||
| \let\altsectionname\sectionname | ||||
| \def\sectionname{Aufgabe} | ||||
| \section[Aufgabe 3]{} | ||||
|     \label{ueb:5:ex:3} | ||||
| \let\sectionname\altsectionname | ||||
| 
 | ||||
| \begin{enumerate}{\bfseries (a)} | ||||
|     %% AUFGABE 5-3a | ||||
|     \item | ||||
| 
 | ||||
|         Sei $H:=\intgr/2\intgr$ die (abelsche) Gruppe von Restklassen modulo $2$ unter Addition.\\ | ||||
|         Sei $G:=H\times H$ mit Neutralelement $e=([0],[0])$ und versehen mit der Produktstruktur.\\ | ||||
|         Als Produkt von (abelschen) Gruppen ist $G$ automatisch eine (abelsche) Gruppe. | ||||
|         Und offensichtlich hat $G$ genau $|G|=|H\times H|=|H|\cdot|H|=2\cdot 2=4$ Elemente.\\ | ||||
|         Es bleibt \textbf{zu zeigen}, dass $\forall{a\in G:~}a\ast a=e$.\\ | ||||
|         Sei also $a=([k],[j])\in H\times H=G$ ein beliebiges Element. | ||||
|         Es gilt | ||||
| 
 | ||||
|             \begin{mathe}[mc]{rcl} | ||||
|                 a\ast a | ||||
|                     &= &([k],[j])\ast([k],[j])\\ | ||||
|                     &= &([k]+[k],[j]+[j])\\ | ||||
|                     &= &([k+k],[j+j])\\ | ||||
|                     &= &([2k],[2j]) | ||||
|                     =([0],[0]) | ||||
|                     =e, | ||||
|             \end{mathe} | ||||
| 
 | ||||
|         da $2\equiv 0\mod 2$.\\ | ||||
|         Also ist unsere Konstruktion von $G$ ein passendes Beispiel. | ||||
| 
 | ||||
|     %% AUFGABE 5-3b | ||||
|     \item | ||||
|         \begin{claim*} | ||||
|             Sei $(G,\ast,e)$ eine Gruppe. | ||||
|             Angenommen, $\forall{a\in G:~}a\ast a=e$. | ||||
|             Dann ist $G$ kommutativ. | ||||
|         \end{claim*} | ||||
| 
 | ||||
|         \begin{proof} | ||||
|             Beachte zunächst, dass wegen Eindeutigkeit des Inverses | ||||
|             die Annahme zu | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{c} | ||||
|                     \eqtag[eq:1:ueb:5:ex:3] | ||||
|                     \forall{a\in G:~}a^{-1}=a | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             äquivalent ist.\\ | ||||
|             \textbf{Zu zeigen:} Für alle $a,b\in G$ gilt $a\ast b=b\ast a$.\\ | ||||
|             Seien also $a,b\in G$ beliebige Elemente. | ||||
|             Es gilt | ||||
| 
 | ||||
|                 \begin{mathe}[mc]{rcccccl} | ||||
|                     a\ast b | ||||
|                         &\eqcrefoverset{eq:1:ueb:5:ex:3}{=} | ||||
|                             &a^{-1}\ast b^{-1} | ||||
|                         &= &(b\ast a)^{-1} | ||||
|                         &\eqcrefoverset{eq:1:ueb:5:ex:3}{=} | ||||
|                             &b\ast a.\\ | ||||
|                 \end{mathe} | ||||
| 
 | ||||
|             Also ist $G$ eine kommutative Gruppe. | ||||
|         \end{proof} | ||||
| \end{enumerate} | ||||
| 
 | ||||
| \setcounternach{part}{2} | ||||
| \part{Selbstkontrollenaufgaben} | ||||
| 
 | ||||
|     \def\chaptername{SKA Blatt} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/ska/ska1.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/ska/ska2.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/ska/ska3.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/ska/ska4.tex | ||||
| %% ******************************************************************************** | ||||
| @ -5040,14 +5292,14 @@ Um diese Urteil also leichter treffen zu können ersetzen wir die Elemente durch | ||||
|                 \pgfmathsetmacro\vabst{1} | ||||
|                 \pgfmathsetmacro\rad{8mm} | ||||
| 
 | ||||
|                 \node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (g_0) at (0*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (h_0) at (1*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (g_1) at (0*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (h_1) at (2*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (g_0) at (0*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (h_0) at (1*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (g_1) at (0*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (h_1) at (2*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {}; | ||||
|             \end{tikzpicture} | ||||
|         } | ||||
|         \hraum | ||||
| @ -5057,54 +5309,54 @@ Um diese Urteil also leichter treffen zu können ersetzen wir die Elemente durch | ||||
|                 \pgfmathsetmacro\vabst{1} | ||||
|                 \pgfmathsetmacro\rad{8mm} | ||||
| 
 | ||||
|                 \node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (g_0) at (0*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (h_0) at (1*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (g_1) at (0*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (h_1) at (2*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (g_2) at (0*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (h_2) at (3*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (g_3) at (0*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (h_3) at (4*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 3\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (g_4) at (0*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (h_4) at (5*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (g_5) at (0*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (h_5) at (6*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_0_2) at (3*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_0_3) at (4*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_0_4) at (5*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_0_5) at (6*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_1_2) at (3*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_1_3) at (4*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_1_4) at (5*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_1_5) at (6*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_2_0) at (1*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_2_1) at (2*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_2_2) at (3*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_2_3) at (4*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_2_4) at (5*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_2_5) at (6*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_3_0) at (1*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_3_1) at (2*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_3_2) at (3*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_3_3) at (4*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_3_4) at (5*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_3_5) at (6*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_4_0) at (1*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_4_1) at (2*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_4_2) at (3*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_4_3) at (4*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_4_4) at (5*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_4_5) at (6*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,255}, draw] (gh_5_0) at (1*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,216}, draw] (gh_5_1) at (2*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,178}, draw] (gh_5_2) at (3*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,140}, draw] (gh_5_3) at (4*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,102}, draw] (gh_5_4) at (5*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:white,64}, draw] (gh_5_5) at (6*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$e=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (g_0) at (0*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (h_0) at (1*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (g_1) at (0*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (h_1) at (2*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (g_2) at (0*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (h_2) at (3*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 2\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (g_3) at (0*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (h_3) at (4*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 3\ 2)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (g_4) at (0*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (h_4) at (5*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, label=left:{$(1\ 3)=:$}, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (g_5) at (0*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=2pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (h_5) at (6*\habst, 0*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_0_0) at (1*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_0_1) at (2*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_0_2) at (3*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_0_3) at (4*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_0_4) at (5*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_0_5) at (6*\habst, -1*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_1_0) at (1*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_1_1) at (2*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_1_2) at (3*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_1_3) at (4*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_1_4) at (5*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_1_5) at (6*\habst, -2*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_2_0) at (1*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_2_1) at (2*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_2_2) at (3*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_2_3) at (4*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_2_4) at (5*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_2_5) at (6*\habst, -3*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_3_0) at (1*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_3_1) at (2*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_3_2) at (3*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_3_3) at (4*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_3_4) at (5*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_3_5) at (6*\habst, -4*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_4_0) at (1*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_4_1) at (2*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_4_2) at (3*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_4_3) at (4*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_4_4) at (5*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_4_5) at (6*\habst, -5*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,64}, draw] (gh_5_0) at (1*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,200}, draw] (gh_5_1) at (2*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,200;blue,200}, draw] (gh_5_2) at (3*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,64;green,64;blue,64}, draw] (gh_5_3) at (4*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,200;blue,200}, draw] (gh_5_4) at (5*\habst, -6*\vabst) {}; | ||||
|                 \node[rectangle, line width=0.5pt, minimum size=0.9*\rad, fill={rgb,255:red,200;green,64;blue,200}, draw] (gh_5_5) at (6*\habst, -6*\vabst) {}; | ||||
|             \end{tikzpicture} | ||||
|         } | ||||
|         \hraum | ||||
| @ -5386,6 +5638,47 @@ Wir betrachten die Komposition ${g\circ f:X\to Z}$ | ||||
|         \end{proof} | ||||
| \end{enumerate} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: body/quizzes/quiz5.tex | ||||
| %% ******************************************************************************** | ||||
| 
 | ||||
| \setcounternach{chapter}{5} | ||||
| \chapter[Woche 5]{Woche 5} | ||||
|     \label{quiz:5} | ||||
| 
 | ||||
| \begin{claim*} | ||||
|     Seien $n\in\ntrlpos$ und $p\in\mathbb{P}$ mit $n<p\leq 2n$. | ||||
|     Dann gilt $p\divides\begin{svector}2n\\n\\\end{svector}$. | ||||
| \end{claim*} | ||||
| 
 | ||||
| \begin{proof} | ||||
|     Aus $n<p\leq 2n$, d.\,h. $p\in\{n+1,n+2,\ldots,2n\}$, folgt (i)~$p\divides\prod_{i=n+1}^{2n}i$.\\ | ||||
|     Es gilt nun | ||||
| 
 | ||||
|         \begin{mathe}[mc]{rcccccl} | ||||
|             \eqtag[eq:1:quiz:5:ex:1] | ||||
|                 \prod_{i=n+1}^{2n}i | ||||
|                 &= &\dfrac{\prod_{i=1}^{2n}i}{n!} | ||||
|                 &= &n!\dfrac{(2n)!}{n!(2n-n)!} | ||||
|                 &= &n!\begin{vector}2n\\n\\\end{vector}.\\ | ||||
|         \end{mathe} | ||||
| 
 | ||||
|     Aus (i) und \eqcref{eq:1:quiz:5:ex:1} folgt also | ||||
|     (ii)~$p\divides \begin{svector}2n\\n\\\end{svector}\cdot n!$.\\ | ||||
|     Beachte, dass $p$ eine Primzahl ist und ${n!,\begin{svector}2n\\n\\\end{svector}\in\intgr}$.\\ | ||||
|     Aus (ii) und \cite[Satz 3.4.14]{sinn2020} folgt also | ||||
|         $p\divides\begin{svector}2n\\n\\\end{svector}$ oder $p\divides n!$.\\ | ||||
| 
 | ||||
|     \fbox{Angenommen, $p\ndivides\begin{svector}2n\\n\\\end{svector}$.}\\ | ||||
|     Dann muss laut des o.\,s. Arguments ${p\divides n!(=\prod_{i=1}^{n}i)}$ gelten.\\ | ||||
|     Eine weitere Anwendung von \cite[Satz 3.4.14]{sinn2020} liefert, | ||||
|     dass ${p\divides i_{0}}$ für ein $i_{0}\in\{1,2,\ldots,n\}$.\\ | ||||
|     Aber dann gilt $1\leq p\leq i_{0}\leq n$. | ||||
|     Das widerspricht der Voraussetzung, dass $n<p$.\\ | ||||
|     Darum stimmt die Annahme nicht. | ||||
|     Das heißt, $p\divides\begin{svector}2n\\n\\\end{svector}$. | ||||
| \end{proof} | ||||
| 
 | ||||
| %% ******************************************************************************** | ||||
| %% FILE: back/index.tex | ||||
| %% ******************************************************************************** | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user