master > master: code-vorlage vereinfacht
This commit is contained in:
parent
b8e2b10ed3
commit
57070f4df1
52
code/main.py
52
code/main.py
@ -32,6 +32,7 @@ from schema import string_to_parts;
|
||||
# zeichenkette = '( A0 || A1 )';
|
||||
# zeichenkette = '( A0 -> A1 )';
|
||||
zeichenkette = '( A0 -> ((A0 && A3) || ! A2) )';
|
||||
# zeichenkette = '( A0 -> ((A0 && A3) || A2) )';
|
||||
# zeichenkette = '(( {G} || !{G} ) -> A5)';
|
||||
|
||||
I = ['A0', 'A2'];
|
||||
@ -54,10 +55,10 @@ def main():
|
||||
print(dedent(
|
||||
'''
|
||||
eval(F, I) = \033[94;1m{eval}\033[0m;
|
||||
atoms(F) = \033[94;1m{atoms}\033[0m; \033[91;1m<- *\033[0m
|
||||
depth(F) = \033[94;1m{d}\033[0m; \033[91;1m<- *\033[0m
|
||||
length(F) = \033[94;1m{l}\033[0m; \033[91;1m<- *\033[0m
|
||||
#parentheses(F) = \033[94;1m{p}\033[0m; \033[91;1m<- *\033[0m
|
||||
\033[2matoms(F) = \033[94;1m{atoms}\033[0m; \033[91;1m<- *\033[0m
|
||||
\033[2mdepth(F) = \033[94;1m{d}\033[0m; \033[91;1m<- *\033[0m
|
||||
\033[2mlength(F) = \033[94;1m{l}\033[0m; \033[91;1m<- *\033[0m
|
||||
\033[2m#parentheses(F) = \033[94;1m{p}\033[0m; \033[91;1m<- *\033[0m
|
||||
|
||||
\033[91;1m*\033[0m \033[2mnoch nicht implementiert!\033[0m
|
||||
\033[1;2;4mChallenge:\033[0m \033[2mschreibe diese Methoden. Probiere mit Stift-und-Zettel die Methoden händisch auszuführen und vergleiche mit dem Code-Output.\033[0m
|
||||
@ -92,42 +93,41 @@ def rekursiv_parentheses(fml: Tree) -> int:
|
||||
return 0;
|
||||
|
||||
def rekursiv_eval(fml: Tree, I: List[str]) -> int:
|
||||
teilfml = getTeilformeln(fml);
|
||||
if fml.data in ['atom', 'beliebig']:
|
||||
index = fml.children[0];
|
||||
return 1 if ('{}'.format(index) in I) else 0;
|
||||
name = fml.children[0];
|
||||
return 1 if (name in I) else 0;
|
||||
elif fml.data == 'wahr':
|
||||
return 1;
|
||||
elif fml.data == 'falsch':
|
||||
return 0;
|
||||
elif fml.data == 'negation':
|
||||
teilformel1 = fml.children[1];
|
||||
if isinstance(teilformel1, Tree):
|
||||
val1 = rekursiv_eval(teilformel1, I);
|
||||
val1 = rekursiv_eval(teilfml[0], I);
|
||||
return 1 - val1;
|
||||
elif fml.data == 'konjunktion':
|
||||
teilformel1 = fml.children[0];
|
||||
teilformel2 = fml.children[2];
|
||||
if isinstance(teilformel1, Tree) and isinstance(teilformel2, Tree):
|
||||
val1 = rekursiv_eval(teilformel1, I);
|
||||
val2 = rekursiv_eval(teilformel2, I);
|
||||
val1 = rekursiv_eval(teilfml[0], I);
|
||||
val2 = rekursiv_eval(teilfml[1], I);
|
||||
return min(val1, val2);
|
||||
elif fml.data == 'disjunktion':
|
||||
teilformel1 = fml.children[0];
|
||||
teilformel2 = fml.children[2];
|
||||
if isinstance(teilformel1, Tree) and isinstance(teilformel2, Tree):
|
||||
val1 = rekursiv_eval(teilformel1, I);
|
||||
val2 = rekursiv_eval(teilformel2, I);
|
||||
val1 = rekursiv_eval(teilfml[0], I);
|
||||
val2 = rekursiv_eval(teilfml[1], I);
|
||||
return max(val1, val2);
|
||||
elif fml.data == 'implikation':
|
||||
teilformel1 = fml.children[0];
|
||||
teilformel2 = fml.children[2];
|
||||
if isinstance(teilformel1, Tree) and isinstance(teilformel2, Tree):
|
||||
val1 = rekursiv_eval(teilformel1, I);
|
||||
val2 = rekursiv_eval(teilformel2, I);
|
||||
val1 = rekursiv_eval(teilfml[0], I);
|
||||
val2 = rekursiv_eval(teilfml[1], I);
|
||||
return 0 if val1 == 1 and val2 == 0 else 1;
|
||||
else:
|
||||
raise Exception('Evaluation nicht möglich!');
|
||||
return True;
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# SONSTIGE METHODEN
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def getTeilformeln(fml: Tree) -> List[Tree]:
|
||||
return [
|
||||
part for part in fml.children
|
||||
if isinstance(part, Tree)
|
||||
and not part.data == 'junktor'
|
||||
];
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# CODE AUSFÜHREN
|
||||
|
Loading…
x
Reference in New Issue
Block a user