Compare commits

...

71 Commits

Author SHA1 Message Date
32ef695c87 master > master: minor fixes for windows 2022-08-29 19:04:03 +02:00
1ee5e7415b master > master: protokoll - Markdown 2022-07-14 14:36:54 +02:00
b1a467b2e4 master > master: protokoll - Markdown 2022-07-14 14:30:13 +02:00
9f807d2a21 master > master: berechnung 2022-07-14 11:58:42 +02:00
de4bd64e77 master > master: protokolle - wochen 14+15 2022-07-14 11:55:44 +02:00
0c61a29375 master > master: code py - VERSION up (patch) 2022-07-01 22:30:21 +02:00
bd355098cc master > master: code py - docs generated 2022-07-01 22:29:58 +02:00
278e3713c8 master > master: code py - config mit Bsp. von euklid + pollard 2022-07-01 13:49:59 +02:00
de238fede9 master > master: code py - pollard rho mit 2 modi 2022-07-01 13:49:33 +02:00
3c965eda7b master > master: protokoll - woche 13 2022-06-30 13:58:35 +02:00
56c22a568c master > master: protokoll - links 2022-06-30 09:06:40 +02:00
c1f346b80e master > master: protokolle wochen 11–13 2022-06-30 06:41:54 +02:00
RD
2d96666bec Merge pull request 'woche12 ---> master' (#3) from woche12 into master
Reviewed-on: #3
2022-06-30 06:25:33 +02:00
7d07f4317e woche12 > master: code py - pollards rho mit log-wachstum für y 2022-06-30 06:24:10 +02:00
2bd07544f3 woche12 > master: code py - random walks ergänzt
- stopkriterien
- logging
2022-06-30 05:44:16 +02:00
7b456d177e woche12 > master: code py - logging für random walk 2022-06-30 05:43:10 +02:00
1e934dc3ef woche12 > master: code py - thirdparty imports für mathe+plots 2022-06-30 05:42:54 +02:00
a7c7179edb woche12 > master: code py - rohe implementierung der walks 2022-06-21 19:02:59 +02:00
5c43419890 woche12 > master: code py - imports von random methoden 2022-06-21 19:02:41 +02:00
c2cb11a141 woche12 > master: code py - vorberechnungen gemäß modell 2022-06-21 19:02:05 +02:00
01ef8c5758 woche12 > master: code py - schema 2022-06-21 19:01:13 +02:00
4001551c9c woche12 > master: code py - leere EPs für walks + genetic hinzugefügt (stubs) 2022-06-21 17:25:39 +02:00
17711327ef woche12 > master: code py - config ergänzt 2022-06-21 17:24:40 +02:00
3d05f7ae1d woche12 > master: code py - schemata für walks + genetic 2022-06-21 17:24:30 +02:00
aaa0b7a124 woche12 > master: code py - documentation 2022-06-20 17:33:29 +02:00
48c47f61b7 woche12 > master: code py - VERSION up 2022-06-20 17:33:20 +02:00
ad354b3b64 woche12 > master: code py - assets für pollards rho mit x-init 2022-06-20 17:24:37 +02:00
1b73ec263b woche12 > master: code py - schema für pollards rho mit x-init 2022-06-20 17:24:28 +02:00
15fe1b04d4 woche12 > master: code py - pollards rho implementiert 2022-06-20 17:24:00 +02:00
f6401f0dfc woche12 > master: code py - assets 2022-06-20 16:49:46 +02:00
f1200dfc25 woche12 > master: code py - euklid alg implementiert 2022-06-20 16:46:35 +02:00
f877ffc9e7 woche12 > master: code py - ep angelegt (stubs) 2022-06-20 15:56:17 +02:00
ac119a0b29 woche12 > master: schemata - neue commands 2022-06-20 15:55:43 +02:00
8cba2fdf13 master > master: code py - display volle loesung statt padding 2022-06-17 08:04:27 +02:00
3032840a1d master > master: code py - display mit leerzeichen um + 2022-06-16 22:39:10 +02:00
48fb136436 master > master: code py - darstellung alignment von summen 2022-06-16 22:27:29 +02:00
efacd73e51 master > master: code py - darstellung
- greedy permutation in Tabelle musste invertiert werden
- Aktualisierung der bound musste beim Loggin erscheinen werden
- value/cost zwecks leichter Vergleichbarkeit als Dezimalzahlen darstellen
2022-06-16 12:53:31 +02:00
ba394993e0 master > master: code py - assets korrigiert 2022-06-15 16:17:06 +02:00
059f9d8742 master > master: protokolle - wochen 10+11 2022-06-15 15:58:30 +02:00
21f61d71c3 master > master: code py - VERSION up 2022-06-15 15:57:43 +02:00
f3db0660f2 master > master: code py - documentation gebaut 2022-06-15 15:57:20 +02:00
77b2f40215 master > master: code py - algorithmus angepasst:
- korrekte behandlung von Permutationen
- hervorhebung von Summanden
- Spalte mit Infos über Moves
- optionen, um alle Gewichte zu zeigen / alle Summen zu zeigen
2022-06-15 15:56:43 +02:00
4cc4410c19 master > master: code py - schemata aktualisiert 2022-06-15 15:54:52 +02:00
3791220cee master > master: code py - fractional Werte + Sortierung in Greedy-Summen 2022-06-14 20:02:22 +02:00
c6149c230a master > master: code py - utils, rel perm 2022-06-14 20:01:48 +02:00
3b8f80cff9 master > master: code py - verbesserte Darstellung + »korrekte« Behandlung von Reihenfolgen
- im Kurs wird die Permutation nur für Greedy-Berechnungen angewandt
- die Reihenfolge der Items in der Hauptberechnung bei B&B bleibt wie bei Angaben
2022-06-14 14:40:02 +02:00
e3c3bbec37 master > master: code py - korrigierte logik 2022-06-14 12:19:35 +02:00
f45781be71 master > master: code py - pad ones/zeros für einelementige Fälle 2022-06-14 11:24:32 +02:00
56a93bbac9 master > master: code py - commands minor korrektur 2022-06-14 10:09:50 +02:00
a93b59539f master > master: code py - schema minor korrektur 2022-06-14 10:09:33 +02:00
304b8315f3 master > master: code py - bei output Sortierung rückgängig machen 2022-06-14 10:09:21 +02:00
828000a2ac master > master: code py - display für Sortierungsschritt 2022-06-14 09:03:29 +02:00
026cd6addf master > master: code py - display verbessert 2022-06-14 01:53:48 +02:00
ea36c82728 master > master: code py - algorithmen für rucksackproblem 2022-06-14 01:35:10 +02:00
7cfaf253b3 master > master: code py - schemata für rucksack 2022-06-14 01:34:44 +02:00
d79b10e190 master > master: READMEs angepasst 2022-06-12 10:32:25 +02:00
8e59bc941f master > master: code py - scripts, doc-building
- `just build-documentation` vom `just build` Befehl jetzt getrennt
- wird nur mit `just dist` Befehl ausgeführt
2022-06-12 10:27:57 +02:00
RD
2a5986d490 Merge pull request 'dev ---> master: documentation von datenmodellen' (#1) from dev into master
Reviewed-on: #1
2022-06-11 16:10:44 +02:00
036c87f829 dev > master: code py - documentation erzeugt 2022-06-11 16:08:08 +02:00
4fa02a4962 master > master: code py - schemata überarbeitet 2022-06-11 16:07:23 +02:00
38b477e0ad master > master: code py - documentation generation 2022-06-11 16:07:09 +02:00
8acb2157ab master > master: code py - minor 2022-06-11 14:07:00 +02:00
d454f71bfa master > master: code py - unit tests aktualisiert 2022-06-11 14:02:09 +02:00
17ea04cfee master > master: code py - config schema aktualisiert 2022-06-11 14:01:24 +02:00
301a9c87be master > master: code py - refactored code mit Endpunkten 2022-06-11 14:00:45 +02:00
d8f6c802b2 master > master: code py - config schema defaults 2022-06-10 16:57:44 +02:00
99a194dfc8 master > master: code py - asset für testfälle aufgeräumt 2022-06-10 16:53:16 +02:00
670fd1b73e master > master: code py - Tarjan / Tabellenspalten umgetauscht 2022-06-10 16:38:42 +02:00
c0bc69450c master > master: code py - fügte tarjan im Hauptzyklus hinzu 2022-06-10 16:32:15 +02:00
3e8b3c157d master > master: code py - verb -> verbose 2022-06-10 16:04:45 +02:00
a83315e3e6 master > master: code py - fügte tarjan api hinzu 2022-06-10 16:04:30 +02:00
122 changed files with 4343 additions and 229 deletions

View File

@@ -21,6 +21,8 @@ Siehe Moodle!
## Code ##
Im Unterordner [`code/rust`](./code/rust)
(und evtl. [`code/python`](./code/python))
werden ggf. Implementierungen von den Algorithmen zu finden sein.
In den Unterordnern
[`code/rust`](./code/rust)
und
[`code/python`](./code/python) (etwas ausführlicher)
sind Implementierungen von einigen Algorithmen bzw. Datenstrukturen zu finden sein.

View File

@@ -12,7 +12,6 @@ omit =
**/__init__.py
# ignore main.py
main.py
# TODO: increase code-coverage:
precision = 0
exclude_lines =
pragma: no cover

View File

@@ -26,6 +26,11 @@
!/models/*-schema.yaml
!/models/README.md
!/docs
!/docs/*/
!/docs/*/Models/
!/docs/**/*.md
!/tests
!/tests/**/
!/tests/**/*.py

View File

@@ -10,7 +10,7 @@ die Methoden mit Daten ausprobieren.
## Voraussetzungen ##
1. Der Python-Compiler **`^3.10.*`** wird benötigt.
2. Es ist auch empfehlenswert, **`justfile`** zu installieren (siehe <https://github.com/casey/just#installation>).
2. Das **`justfile`**-Tool wird benötigt (siehe <https://github.com/casey/just#installation>).
## Build -> Test -> Run ##
@@ -18,29 +18,18 @@ In einem IDE in dem Repo zu diesem Ordner navigieren.
</br>
Eine bash-Konsole aufmachen und folgende Befehle ausführen:
Wer das **justfile**-Tool hat:
```bash
# Zeige alle Befehle:
just
# Zur Installation der Requirements (nur nach Änderungen):
just build;
# Zur Installation der Requirements (nur und immer nach Änderungen nötig):
just build
# Zur Ausführung der unit tests:
just tests;
just tests
# Zur Ausführung des Programms
just run;
just run
# Zur Bereinigung aller Artefakte
just clean;
just clean
```
Wer das justfile-Tool hat:
```bash
# Zur Installation der Requirements (nur nach Änderungen):
python3 -m pip install -r requirements.txt;
# Zur Ausführung der unit tests:
python3 -m pytest tests --cache-clear --verbose -k test_;
# Zur Ausführung des Programms:
python3 main.py
```
Auf Windows verwendet man `py -3` od. `py -310` statt `python3`.
Man kann auch mit einem guten Editor/IDE die Tests einzeln ausführen.

View File

@@ -1,17 +1,59 @@
## Beispiel für Seminarwoche 9 (Blatt 8)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# NOTE:
# Diese Datei enthält Angaben für konkrete Fälle
# für die zu demonstrierenden Algorithmen.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 2 (Blatt 1)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: TARJAN
nodes: [a,b,c]
edges: [[a, c], [c, a], [b, c]]
- name: TARJAN
nodes: [1, 2, 3, 4, 5, 6, 7, 8]
edges: [
[1, 2],
[1, 3],
[2, 4],
[2, 5],
[3, 5],
[3, 6],
[3, 8],
[4, 5],
[4, 7],
[5, 1],
[5, 8],
[6, 8],
[7, 8],
[8, 6],
]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 9 (Blatt 8)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: TSP
dist: [
dist: &ref_dist [
[0, 7, 4, 3],
[7, 0, 5, 6],
[2, 5, 0, 5],
[2, 7, 4, 0],
]
optimise: MIN
- name: TSP
dist: *ref_dist
optimise: MAX
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 10 (Blatt 9)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: HIRSCHBERG
word1: 'happily ever after'
word2: 'apples'
once: true
once: false
- name: HIRSCHBERG
word1: 'happily'
word2: 'applses'
@@ -28,3 +70,131 @@
word1: 'ANSTRENGEN'
word2: 'ANSPANNEN'
once: false
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 11 (Blatt 10)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: RUCKSACK
algorithm: GREEDY
allow-fractional: true
# allow-fractional: false
max-cost: 10
items: [a, b, c, d, e]
costs:
[3, 4, 5, 2, 1]
values:
[8, 7, 8, 3, 2]
- name: RUCKSACK
algorithm: BRANCH-AND-BOUND
max-cost: 10
items: [a, b, c, d, e]
costs: [3, 4, 5, 2, 1]
values: [8, 7, 8, 3, 2]
- name: RUCKSACK
algorithm: BRANCH-AND-BOUND
max-cost: 460
items: [
'Lakritze',
'Esspapier',
'Gummibärchen',
'Schokolade',
'Apfelringe',
]
costs: [220, 80, 140, 90, 100]
values: [100, 10, 70, 80, 100]
- name: RUCKSACK
algorithm: BRANCH-AND-BOUND
max-cost: 90
items: [
'Sonnenblumenkerne',
'Buchweizen',
'Rote Beete',
'Hirse',
'Sellerie',
]
costs: [30, 10, 50, 10, 80]
values: [17, 14, 17, 5, 25]
- name: RUCKSACK
algorithm: BRANCH-AND-BOUND
max-cost: 900
items: [
'Sellerie',
'Sonnenblumenkerne',
'Rote Beete',
'Hirse',
'Buchweizen',
]
costs: [600, 100, 800, 100, 200]
values: [10, 15, 20, 5, 15]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 12
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: RANDOM-WALK
algorithm: GRADIENT
one-based: true
coords-init: [3, 3]
landscape: &ref_landscape1
neighbourhoods:
radius: 1
# metric: MANHATTAN
metric: MAXIMUM
labels:
- x
- y
values:
- [5, 2, 1, 3, 4, 7]
- [8, 4, 3, 5, 5, 6]
- [9, 1, 2, 6, 8, 4]
- [7, 4, 4, 3, 7, 3]
- [6, 4, 2, 1, 0, 7]
- [4, 3, 5, 2, 1, 8]
optimise: MAX
- name: RANDOM-WALK
algorithm: ADAPTIVE
one-based: true
coords-init: [3, 3]
landscape: *ref_landscape1
optimise: MAX
- name: RANDOM-WALK
algorithm: METROPOLIS
annealing: false
temperature-init: 3.
one-based: true
coords-init: [5, 3]
landscape: *ref_landscape1
optimise: MAX
- name: RANDOM-WALK
algorithm: METROPOLIS
annealing: false
temperature-init: 3.
one-based: false
coords-init: [0]
landscape:
neighbourhoods:
radius: 1
metric: MANHATTAN
labels:
- x
values: [4, 6.5, 2]
optimise: MAX
- name: GENETIC
population:
- [3, 5, 4, 1, 6, 7, 2, 8, 9]
- [4, 5, 3, 2, 1, 6, 7, 8, 9]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beispiele für Seminarwoche 13
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- name: EUKLID
numbers:
- 2017
- 58
- name: POLLARD-RHO
growth: LINEAR
# growth: EXPONENTIAL
number: 534767
x-init: 5

View File

@@ -6,8 +6,13 @@ info:
ADS2 an der Universität Leipzig (Sommersemester 2022)
implementiert.
options:
# log-level: DEBUG
log-level: INFO
verbose: &ref_verbose true
tarjan:
verbose: *ref_verbose
tsp:
verbose: true
verbose: *ref_verbose
hirschberg:
# standardwerte sind (1, 1) und (2, 1):
penality-gap: 1
@@ -17,9 +22,25 @@ options:
diagonal: 0
horizontal: 1
vertical: 2
# verbose: []
verbose:
- COSTS
- MOVES
show:
# - ATOMS
- TREE
show: []
# show:
# - ATOMS
# - TREE
rucksack:
verbose: *ref_verbose
show: []
# show:
# - ALL-WEIGHTS
# - ALL-SUMS
genetic:
verbose: *ref_verbose
random-walk:
verbose: *ref_verbose
euklid:
verbose: *ref_verbose
pollard-rho:
verbose: *ref_verbose

View File

@@ -1 +1 @@
0.1.0
0.3.1

View File

@@ -0,0 +1,9 @@
# Command
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,10 @@
# CommandEuklid
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**numbers** | [**List**](integer.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,10 @@
# CommandGenetic
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**population** | [**List**](array.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,12 @@
# CommandHirschberg
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**word1** | [**String**](string.md) | Word that gets placed vertically in algorithm. | [default to null]
**word2** | [**String**](string.md) | Word that gets placed horizontally in algorithm | [default to null]
**once** | [**Boolean**](boolean.md) | | [optional] [default to false]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,12 @@
# CommandPollard
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**number** | [**Integer**](integer.md) | | [default to null]
**growth** | [**EnumPollardGrowthRate**](EnumPollardGrowthRate.md) | | [default to null]
**xMinusinit** | [**Integer**](integer.md) | | [optional] [default to 2]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,16 @@
# CommandRandomWalk
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**algorithm** | [**EnumWalkMode**](EnumWalkMode.md) | | [default to null]
**landscape** | [**DataTypeLandscapeGeometry**](DataTypeLandscapeGeometry.md) | | [default to null]
**optimise** | [**EnumOptimiseMode**](EnumOptimiseMode.md) | | [default to null]
**coordsMinusinit** | [**List**](integer.md) | Initial co-ordinates to start the algorithm. | [optional] [default to null]
**temperatureMinusinit** | [**Float**](float.md) | | [optional] [default to null]
**annealing** | [**Boolean**](boolean.md) | | [optional] [default to false]
**oneMinusbased** | [**Boolean**](boolean.md) | | [optional] [default to false]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,15 @@
# CommandRucksack
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**algorithm** | [**EnumRucksackAlgorithm**](EnumRucksackAlgorithm.md) | | [default to null]
**allowMinusfractional** | [**Boolean**](boolean.md) | | [optional] [default to false]
**maxMinuscost** | [**BigDecimal**](number.md) | Upper bound for total cost of rucksack. | [default to null]
**costs** | [**List**](number.md) | Array of cost for each item (e.g. volume, weight, price, time, etc.). | [default to null]
**values** | [**List**](number.md) | Value extracted from each item (e.g. energy, profit, etc.). | [default to null]
**items** | [**List**](string.md) | Optional names of the items (if empty, defaults to 1-based indexes). | [optional] [default to []]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,11 @@
# CommandTarjan
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**nodes** | [**List**](anyOf&lt;integer,number,string&gt;.md) | | [default to null]
**edges** | [**List**](array.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,11 @@
# CommandTsp
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**name** | [**EnumAlgorithmNames**](EnumAlgorithmNames.md) | | [default to null]
**dist** | [**List**](array.md) | | [default to null]
**optimise** | [**EnumOptimiseMode**](EnumOptimiseMode.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,11 @@
# DataTypeLandscapeGeometry
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**neighbourhoods** | [**DataTypeLandscapeNeighbourhoods**](DataTypeLandscapeNeighbourhoods.md) | | [default to null]
**labels** | [**List**](string.md) | | [default to null]
**values** | [**DataTypeLandscapeValues**](DataTypeLandscapeValues.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,10 @@
# DataTypeLandscapeNeighbourhoods
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**radius** | [**BigDecimal**](number.md) | | [optional] [default to 1]
**metric** | [**EnumLandscapeMetric**](EnumLandscapeMetric.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# DataTypeLandscapeValues
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumAlgorithmNames
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumLandscapeMetric
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumOptimiseMode
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumPollardGrowthRate
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumRucksackAlgorithm
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumWalkMode
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,38 @@
# Documentation for Schemata for command instructions
<a name="documentation-for-api-endpoints"></a>
## Documentation for API Endpoints
All URIs are relative to *http://.*
Class | Method | HTTP request | Description
------------ | ------------- | ------------- | -------------
<a name="documentation-for-models"></a>
## Documentation for Models
- [Command](.//Models/Command.md)
- [CommandEuklid](.//Models/CommandEuklid.md)
- [CommandGenetic](.//Models/CommandGenetic.md)
- [CommandHirschberg](.//Models/CommandHirschberg.md)
- [CommandPollard](.//Models/CommandPollard.md)
- [CommandRandomWalk](.//Models/CommandRandomWalk.md)
- [CommandRucksack](.//Models/CommandRucksack.md)
- [CommandTarjan](.//Models/CommandTarjan.md)
- [CommandTsp](.//Models/CommandTsp.md)
- [DataTypeLandscapeGeometry](.//Models/DataTypeLandscapeGeometry.md)
- [DataTypeLandscapeNeighbourhoods](.//Models/DataTypeLandscapeNeighbourhoods.md)
- [DataTypeLandscapeValues](.//Models/DataTypeLandscapeValues.md)
- [EnumAlgorithmNames](.//Models/EnumAlgorithmNames.md)
- [EnumLandscapeMetric](.//Models/EnumLandscapeMetric.md)
- [EnumOptimiseMode](.//Models/EnumOptimiseMode.md)
- [EnumPollardGrowthRate](.//Models/EnumPollardGrowthRate.md)
- [EnumRucksackAlgorithm](.//Models/EnumRucksackAlgorithm.md)
- [EnumWalkMode](.//Models/EnumWalkMode.md)
<a name="documentation-for-authorization"></a>
## Documentation for Authorization
All endpoints do not require authorization.

View File

@@ -0,0 +1,18 @@
# AppOptions
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**logMinuslevel** | [**EnumLogLevel**](EnumLogLevel.md) | | [default to null]
**verbose** | [**Boolean**](boolean.md) | Global setting for verbosity. | [optional] [default to false]
**tarjan** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
**tsp** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
**hirschberg** | [**AppOptions_hirschberg**](AppOptions_hirschberg.md) | | [default to null]
**rucksack** | [**AppOptions_rucksack**](AppOptions_rucksack.md) | | [default to null]
**randomMinuswalk** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
**genetic** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
**euklid** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
**pollardMinusrho** | [**AppOptions_tarjan**](AppOptions_tarjan.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,13 @@
# AppOptionsHirschberg
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**penalityMinusmismatch** | [**BigDecimal**](number.md) | | [default to 1]
**penalityMinusgap** | [**BigDecimal**](number.md) | | [default to 1]
**moveMinuspriorities** | [**AppOptions_hirschberg_move_priorities**](AppOptions_hirschberg_move_priorities.md) | | [default to null]
**verbose** | [**List**](EnumHirschbergVerbosity.md) | | [optional] [default to []]
**show** | [**List**](EnumHirschbergShow.md) | | [optional] [default to []]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,11 @@
# AppOptionsHirschbergMovePriorities
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**diagonal** | [**Integer**](integer.md) | | [optional] [default to 0]
**horizontal** | [**Integer**](integer.md) | | [optional] [default to 1]
**vertical** | [**Integer**](integer.md) | | [optional] [default to 2]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,10 @@
# AppOptionsRucksack
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**verbose** | [**Boolean**](boolean.md) | | [optional] [default to false]
**show** | [**List**](EnumRucksackShow.md) | | [optional] [default to []]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,9 @@
# AppOptionsTarjan
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**verbose** | [**Boolean**](boolean.md) | | [default to false]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,10 @@
# Config
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**info** | [**Info**](Info.md) | | [default to null]
**options** | [**AppOptions**](AppOptions.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumHirschbergShow
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumHirschbergVerbosity
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumLogLevel
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,8 @@
# EnumRucksackShow
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,11 @@
# Info
## Properties
Name | Type | Description | Notes
------------ | ------------- | ------------- | -------------
**title** | [**String**](string.md) | | [default to null]
**description** | [**String**](string.md) | | [default to null]
**author** | [**String**](string.md) | | [default to null]
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)

View File

@@ -0,0 +1,31 @@
# Documentation for Schemata for config models
<a name="documentation-for-api-endpoints"></a>
## Documentation for API Endpoints
All URIs are relative to *http://.*
Class | Method | HTTP request | Description
------------ | ------------- | ------------- | -------------
<a name="documentation-for-models"></a>
## Documentation for Models
- [AppOptions](.//Models/AppOptions.md)
- [AppOptionsHirschberg](.//Models/AppOptionsHirschberg.md)
- [AppOptionsHirschbergMovePriorities](.//Models/AppOptionsHirschbergMovePriorities.md)
- [AppOptionsRucksack](.//Models/AppOptionsRucksack.md)
- [AppOptionsTarjan](.//Models/AppOptionsTarjan.md)
- [Config](.//Models/Config.md)
- [EnumHirschbergShow](.//Models/EnumHirschbergShow.md)
- [EnumHirschbergVerbosity](.//Models/EnumHirschbergVerbosity.md)
- [EnumLogLevel](.//Models/EnumLogLevel.md)
- [EnumRucksackShow](.//Models/EnumRucksackShow.md)
- [Info](.//Models/Info.md)
<a name="documentation-for-authorization"></a>
## Documentation for Authorization
All endpoints do not require authorization.

View File

@@ -1,4 +1,4 @@
set shell := [ "bash", "-uc" ]
# set shell := [ "bash", "-uc" ]
_default:
@- just --unsorted --choose
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -12,6 +12,7 @@ _default:
PYTHON := if os_family() == "windows" { "py -3" } else { "python3" }
GEN_MODELS := "datamodel-codegen"
GEN_MODELS_DOCUMENTATION := "openapi-generator"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Macros
@@ -56,6 +57,12 @@ _generate-models path name:
--input {{path}}/{{name}}-schema.yaml \
--output {{path}}/generated/{{name}}.py
_generate-models-documentation path_schema path_docs name:
@- {{GEN_MODELS_DOCUMENTATION}} generate \
--input-spec {{path_schema}}/{{name}}-schema.yaml \
--generator-name markdown \
--output "{{path_docs}}/{{name}}"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# TARGETS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -64,16 +71,30 @@ _generate-models path name:
# TARGETS: build
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
build: _build-requirements _build-skip-requirements
_build-skip-requirements: build-models
_build-requirements:
build:
@just build-requirements
@just _check-system-requirements
@just build-models
build-requirements:
@{{PYTHON}} -m pip install --disable-pip-version-check -r requirements.txt
build-models: _check-system-requirements _build-models-nochecks
_build-models-nochecks:
build-models:
@echo "Generate data models from schemata."
@just _delete-if-folder-exists "models/generated"
@just _create-folder-if-not-exists "models/generated"
@- just _generate-models "models" "config"
@- just _generate-models "models" "commands"
build-documentation:
@echo "Generate documentations data models from schemata."
@just _delete-if-folder-exists "docs"
@just _create-folder-if-not-exists "docs"
@- just _generate-models-documentation "models" "docs" "config"
@- just _generate-models-documentation "models" "docs" "commands"
@- just _clean-all-files ".openapi-generator*"
@- just _clean-all-folders ".openapi-generator*"
dist:
@just build
@just build-documentation
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# TARGETS: run
@@ -172,3 +193,7 @@ _check-system-requirements:
echo "Command '{{GEN_MODELS}}' did not work. Ensure that the installation of 'datamodel-code-generator' worked and that system paths are set." \
exit 1; \
fi
@if ! ( {{GEN_MODELS_DOCUMENTATION}} --help >> /dev/null 2> /dev/null ); then \
echo "Command '{{GEN_MODELS_DOCUMENTATION}}' did not work. Ensure that the installation of 'datamodel-code-generator' worked and that system paths are set." \
exit 1; \
fi

View File

@@ -11,43 +11,31 @@ import sys
os.chdir(os.path.join(os.path.dirname(__file__)));
sys.path.insert(0, os.getcwd());
from src.thirdparty.maths import *;
from models.generated.config import *;
from models.generated.commands import *;
from src.core.log import *;
from src.setup.config import *;
from src.models.graphs.graph import *;
from src.algorithms.tarjan.algorithms import *;
from src.algorithms.tsp import *;
from src.algorithms.hirschberg import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# GLOBAL CONSTANTS/VARIABLES
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
from src.models.config import *;
from src.core import log;
from src.setup import config;
from src import api;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MAIN METHOD
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def enter():
for command in COMMANDS:
if isinstance(command, CommandTsp):
tsp_algorithm(
dist = np.asarray(command.dist, dtype=float),
optimise = min if command.optimise == EnumTSPOptimise.min else max,
verbose = OPTIONS.tsp.verbose,
);
elif isinstance(command, CommandHirschberg):
hirschberg_algorithm(
X = command.word1,
Y = command.word2,
once = command.once,
verb = OPTIONS.hirschberg.verbose,
show = OPTIONS.hirschberg.show,
);
def enter(*args: str):
# set logging level:
log.configure_logging(config.LOG_LEVEL);
# process inputs:
if len(args) == 0:
# Führe befehle in Assets aus:
for command in config.COMMANDS:
result = api.run_command(command);
# ignored if log-level >> DEBUG
log.log_result(result, debug=True);
else:
# Führe CLI-Befehl aus:
result = api.run_command_from_json(args[0]);
# ignored if log-level >> DEBUG
log.log_result(result, debug=True);
return;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -55,4 +43,7 @@ def enter():
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if __name__ == '__main__':
enter();
sys.tracebacklimit = 0;
# NOTE: necessary for Windows, to ensure that console output is rendered correctly:
os.system('');
enter(*sys.argv[1:]);

View File

@@ -1,8 +1,9 @@
openapi: 3.0.3
info:
version: 0.1.0
version: 0.3.1
title: Schemata for command instructions
servers: []
servers:
- url: "."
paths: {}
components:
schemas:
@@ -22,14 +23,15 @@ components:
Command:
description: |-
Instructions for command to call
type: object
required:
- name
properties: &ref_command_properties
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
additionalProperties: true
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Command - Algorithm: Tarjan
# Algorithm: Tarjan
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandTarjan:
description: |-
@@ -37,12 +39,31 @@ components:
type: object
required:
- name
- nodes
- edges
properties:
<<: *ref_command_properties
# required:
# properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
nodes:
type: array
items:
anyOf:
- type: integer
- type: number
- type: string
edges:
type: array
items:
type: array
minItems: 2
maxItems: 2
items:
anyOf:
- type: integer
- type: number
- type: string
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Command - Algorithm: TSP
# Algorithm: TSP
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandTsp:
description: |-
@@ -53,7 +74,8 @@ components:
- optimise
- dist
properties:
<<: *ref_command_properties
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
dist:
type: array
items:
@@ -61,9 +83,9 @@ components:
items:
type: number
optimise:
$ref: '#/components/schemas/EnumTSPOptimise'
$ref: '#/components/schemas/EnumOptimiseMode'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Command - Algorithm: Hirschberg
# Algorithm: Hirschberg
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandHirschberg:
description: |-
@@ -74,7 +96,8 @@ components:
- word1
- word2
properties:
<<: *ref_command_properties
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
word1:
description: Word that gets placed vertically in algorithm.
type: string
@@ -84,6 +107,192 @@ components:
once:
type: boolean
default: false
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Algorithm: Rucksack Branch & Bound
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandRucksack:
description: |-
Instructions for execution of Branch & Bound-Algorithm for the Rucksack-Problem
type: object
required:
- name
- algorithm
- max-cost
- costs
- values
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
algorithm:
$ref: '#/components/schemas/EnumRucksackAlgorithm'
allow-fractional:
type: boolean
default: false
max-cost:
description: Upper bound for total cost of rucksack.
type: number
minimum: 0
costs:
description: Array of cost for each item (e.g. volume, weight, price, time, etc.).
type: array
items:
type: number
exclusiveMinimum: 0
values:
description: Value extracted from each item (e.g. energy, profit, etc.).
type: array
items:
type: number
items:
description: Optional names of the items (if empty, defaults to 1-based indexes).
type: array
items:
type: string
default: []
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Algorithm: Random Walk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandRandomWalk:
description: |-
Instructions for execution of random walks to determine local extrema in a fitness landscape
type: object
required:
- name
- algorithm
- landscape
- optimise
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
algorithm:
$ref: '#/components/schemas/EnumWalkMode'
landscape:
$ref: '#/components/schemas/DataTypeLandscapeGeometry'
optimise:
$ref: '#/components/schemas/EnumOptimiseMode'
coords-init:
description: Initial co-ordinates to start the algorithm.
type: array
items:
type: integer
minItems: 1
temperature-init:
type: float
default: 1.
annealing:
type: boolean
default: false
one-based:
type: boolean
default: false
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Algorithm: Genetic Algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandGenetic:
description: |-
Instructions for execution of the Genetic algorithm
type: object
required:
- name
- population
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
population:
type: array
items:
type: array
items:
type: string
minItems: 2
# maxItems: 2 # FIXME: does not work!
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Algorithm: Euklidean algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandEuklid:
description: |-
Instructions for execution of the Euklidean gcd-algorithm
type: object
required:
- name
- numbers
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
numbers:
type: array
items:
type: integer
exclusiveMinimum: 0
minItems: 2
maxItems: 2
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Algorithm: Pollard's rho
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CommandPollard:
description: |-
Instructions for execution of the Pollard's rho algorithm
type: object
required:
- name
- growth
- number
properties:
name:
$ref: '#/components/schemas/EnumAlgorithmNames'
number:
type: integer
exclusiveMinimum: 0
growth:
$ref: '#/components/schemas/EnumPollardGrowthRate'
x-init:
type: integer
default: 2
minimum: 2
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Data-type Landscape Geometry, Landscape Values
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DataTypeLandscapeGeometry:
description: |-
Structure for the geometry of a fitness landscape
type: object
required:
- neighbourhoods
- labels
- values
properties:
neighbourhoods:
$ref: '#/components/schemas/DataTypeLandscapeNeighbourhoods'
labels:
type: array
items:
type: string
minItems: 1
values:
$ref: '#/components/schemas/DataTypeLandscapeValues'
DataTypeLandscapeNeighbourhoods:
description: |-
Options for the definition of discrete neighbourhoods of a fitness landscape
type: object
required:
- metric
properties:
radius:
type: number
minimum: 1
default: 1
metric:
$ref: '#/components/schemas/EnumLandscapeMetric'
DataTypeLandscapeValues:
description: |-
A (potentially multi-dimensional) array of values for the fitness landscape.
oneOf:
- type: array
items:
type: number
- type: array
items:
$ref: '#/components/schemas/DataTypeLandscapeValues'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Algorithm Names
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -95,13 +304,69 @@ components:
- TARJAN
- TSP
- HIRSCHBERG
- RUCKSACK
- RANDOM-WALK
- GENETIC
- EUKLID
- POLLARD-RHO
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum TSP - Optimise Mode
# Enum Optimise Mode
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumTSPOptimise:
EnumOptimiseMode:
description: |-
Enumeration of optimisation options for TSP
Enumeration of optimisation modi.
type: string
enum:
- MIN
- MAX
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Rucksack mode for algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumRucksackAlgorithm:
description: |-
Enumeration of mode for Rucksack problem
type: string
enum:
- GREEDY
- BRANCH-AND-BOUND
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Type for choice of growth rate in Pollard Algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumPollardGrowthRate:
description: |-
Via the 'tail-chasing' period finding method in Pollard's rho algorithm,
the difference between the indexes of the pseudo-random sequence
can be chosen to growth according to different rates, e.g.
- `LINEAR` - choose `x[k]` and `x[2k]`
- `EXPONENTIAL` - choose `x[k]` and `x[2^{k}]`
type: string
enum:
- LINEAR
- EXPONENTIAL
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Type of walk mode for fitness walk algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumWalkMode:
description: |-
Enumeration of walk mode for fitness walk algorithm
- `ADAPTIVE` - points uniformly randomly chosen from nbhd.
- `GRADIENT` - points uniformly randomly chosen amongst points in nbhd with steepest gradient.
- `METROPOLIS` - points uniformly randomly chosen from nbhd. or by entropy.
type: string
enum:
- ADAPTIVE
- GRADIENT
- METROPOLIS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum for metric for neighbourhoods in fitness landscape
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumLandscapeMetric:
description: |-
Enumeration of mode for Rucksack problem
- `MAXIMUM` - `Q` is a neighbour of `P` <==> `max_i d(P_i, Q_i) <= r`
- `MANHATTAN` - `Q` is a neighbour of `P` <==> `sum_i d(P_i, Q_i) <= r`
type: string
enum:
- MAXIMUM
- MANHATTAN

View File

@@ -1,8 +1,9 @@
openapi: 3.0.3
info:
version: 0.1.0
version: 0.3.1
title: Schemata for config models
servers: []
servers:
- url: "."
paths: {}
components:
schemas:
@@ -10,7 +11,7 @@ components:
# Config
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Config:
descripton: |-
description: |-
Data model for all parts of the configuration.
type: object
required:
@@ -48,9 +49,30 @@ components:
Options pertaining to the rudimentary setup of the app.
type: object
required:
- log-level
- tsp
- tarjan
- hirschberg
- rucksack
- random-walk
- genetic
- euklid
- pollard-rho
properties:
log-level:
$ref: '#/components/schemas/EnumLogLevel'
verbose:
description: Global setting for verbosity.
type: boolean
default: false
tarjan:
type: object
required:
- verbose
properties:
verbose:
type: boolean
default: false
tsp:
type: object
required:
@@ -65,8 +87,6 @@ components:
- penality-mismatch
- penality-gap
- move-priorities
- verbose
- show
properties:
penality-mismatch:
type: number
@@ -99,6 +119,60 @@ components:
items:
$ref: '#/components/schemas/EnumHirschbergShow'
default: []
rucksack:
type: object
required: []
properties:
verbose:
type: boolean
default: false
show:
type: array
items:
$ref: '#/components/schemas/EnumRucksackShow'
default: []
random-walk:
type: object
required:
- verbose
properties:
verbose:
type: boolean
default: false
genetic:
type: object
required:
- verbose
properties:
verbose:
type: boolean
default: false
euklid:
type: object
required:
- verbose
properties:
verbose:
type: boolean
default: false
pollard-rho:
type: object
required:
- verbose
properties:
verbose:
type: boolean
default: false
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum LogLevel
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumLogLevel:
description: |-
Enumeration of settings for log level.
type: string
enum:
- INFO
- DEBUG
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Hirschberg - Verbosity options
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -114,8 +188,18 @@ components:
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumHirschbergShow:
description: |-
Enumeration of verbosity options for Hirschberg
Enumeration of display options for Hirschberg
type: string
enum:
- TREE
- ATOMS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enum Rucksack - display options
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EnumRucksackShow:
description: |-
Enumeration of display options for the Rucksack problem
type: string
enum:
- ALL-WEIGHTS
- ALL-SUMS

View File

@@ -1,6 +1,6 @@
[project]
name = "uni-leipzig-ads-2-2022"
version = "1.0.0"
version = "0.3.1"
description = "Zusatzcode, um Algorithmen und Datenstrukturen im Kurs ADS2 zu demonstrieren."
authors = [ "Raj Dahya" ]
maintainers = [ "raj_mathe" ]

View File

@@ -23,6 +23,7 @@ lazy-load>=0.8.2
pyyaml>=6.0
pydantic>=1.9.0
datamodel-code-generator>=0.13.0
openapi-generator-cli>=4.3.1
# misc
lorem>=0.1.1

View File

@@ -0,0 +1,16 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.euklid.algorithms import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'euklidean_algorithm',
];

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from models.generated.config import *;
from src.core.utils import *;
from src.models.euklid import *;
from src.algorithms.euklid.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'euklidean_algorithm',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD euklidean algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def euklidean_algorithm(
a: int,
b: int,
verbose: bool = False,
) -> Tuple[int, int, int]:
'''
Führt den Euklideschen Algorithmus aus, um den größten gemeinsamen Teiler (ggT, en: gcd)
von zwei positiven Zahlen zu berechnen.
'''
################
# NOTE:
# Lemma: gcd(a,b) = gcd(mod(a, b), b)
# Darum immer weiter (a, b) durch (b, gcd(a,b)) ersetzen, bis b == 0.
################
steps = [];
d = 0;
while True:
if b == 0:
d = a;
steps.append(Step(a=a, b=b, gcd=d, div=0, rem=a, coeff_a=1, coeff_b=0));
break;
else:
# Berechne k, r so dass a = k·b + r mit k ≥ 0, 0 ≤ r < b:
r = a % b;
k = math.floor(a / b);
# Speichere Berechnungen:
steps.append(Step(a=a, b=b, gcd=0, div=k, rem=r, coeff_a=0, coeff_b=0));
# ersetze a, b durch b, r:
a = b;
b = r;
################
# NOTE:
# In jedem step gilt
# a = k·b + r
# und im folgenden gilt:
# d = coeff_a'·a' + coeff_b'·b'
# wobei
# a' = b
# b' = r
# Darum:
# d = coeff_a'·b + coeff_b'·(a - k·b)
# = coeff_b'·a + (coeff_a' - k·coeff_b)·b
# Darum:
# coeff_a = coeff_b'
# coeff_b = coeff_a' - k·coeff_b
################
coeff_a = 1;
coeff_b = 0;
for step in steps[::-1][1:]:
(coeff_a, coeff_b) = (coeff_b, coeff_a - step.div * coeff_b);
step.coeff_a = coeff_a;
step.coeff_b = coeff_b;
step.gcd = d;
if verbose:
step = steps[0];
repr = display_table(steps=steps, reverse=True);
expr = display_sum(step=step);
print('');
print('\x1b[1mEuklidescher Algorithmus\x1b[0m');
print('');
print(repr);
print('');
print('\x1b[1mLösung\x1b[0m');
print('');
print(f'a=\x1b[1m{step.a}\x1b[0m; b=\x1b[1m{step.b}\x1b[0m; d = \x1b[1m{step.gcd}\x1b[0m = {expr}.');
print('');
return d, coeff_a, coeff_b;

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.models.euklid import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'display_table',
'display_sum',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_table(
steps: List[Step],
reverse: bool = False,
) -> str:
if reverse:
steps = steps[::-1];
table = pd.DataFrame({
'a': [step.a for step in steps],
'b': [step.b for step in steps],
'div': ['-' if step.b == 0 else step.div for step in steps],
'gcd': [step.gcd for step in steps],
'expr': [f'= {display_sum(step=step)}' for step in steps],
}) \
.reset_index(drop=True);
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers=['a', 'b', 'floor(a/b)', 'gcd(a,b)', 'gcd(a,b)=x·a + y·b'],
showindex=False,
colalign=('right', 'right', 'right', 'center', 'left'),
tablefmt='simple'
);
return repr;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_sum(step: Step) -> str:
return f'\x1b[1m{step.coeff_a}\x1b[0m·a + \x1b[1m{step.coeff_b}\x1b[0m·b' ;

View File

@@ -0,0 +1,16 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.genetic.algorithms import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'genetic_algorithm',
];

View File

@@ -0,0 +1,38 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from models.generated.config import *;
from src.core.log import *;
from src.core.utils import *;
from src.models.genetic import *;
from src.algorithms.genetic.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'genetic_algorithm',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD genetic algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def genetic_algorithm(
individual1: List[str],
individual2: List[str],
verbose: bool,
):
'''
Führt den genetischen Algorithmus auf 2 Individuen aus.
'''
log_warn('Noch nicht implementiert!');
return;

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.core.log import *;
from src.models.genetic import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'display_table',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_table(
) -> str:
log_warn('Noch nicht implementiert!');
return '';

View File

@@ -6,7 +6,6 @@
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.hirschberg.algorithms import *;
from src.models.hirschberg.penalties import *;
from src.algorithms.hirschberg.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -14,5 +13,6 @@ from src.algorithms.hirschberg.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'simple_algorithm',
'hirschberg_algorithm',
];

View File

@@ -31,8 +31,7 @@ __all__ = [
def simple_algorithm(
X: str,
Y: str,
verb: List[EnumHirschbergVerbosity] = [],
show: List[EnumHirschbergShow] = [],
verbose: List[EnumHirschbergVerbosity] = [],
) -> Tuple[str, str]:
'''
Dieser Algorithmus berechnet die Edit-Distanzen + optimale Richtungen ein Mal.
@@ -41,8 +40,8 @@ def simple_algorithm(
Costs, Moves = compute_cost_matrix(X = '-' + X, Y = '-' + Y);
path = reconstruct_optimal_path(Moves=Moves);
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
if verb != []:
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
if verbose != []:
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verbose=verbose);
display = word_y + f'\n{"-"*len(word_x)}\n' + word_x;
print(f'\n{repr}\n\n\x1b[1mOptimales Alignment:\x1b[0m\n\n{display}\n');
return word_x, word_y;
@@ -50,8 +49,7 @@ def simple_algorithm(
def hirschberg_algorithm(
X: str,
Y: str,
once: bool = False,
verb: List[EnumHirschbergVerbosity] = [],
verbose: List[EnumHirschbergVerbosity] = [],
show: List[EnumHirschbergShow] = [],
) -> Tuple[str, str]:
'''
@@ -64,16 +62,12 @@ def hirschberg_algorithm(
Daraus wird unmittelbar ein optimales Alignment bestimmt.
Des Weiteren werden Zeitkosten durch Divide-and-Conquer klein gehalten.
'''
# ggf. nur den simplen Algorithmus ausführen:
if once:
return simple_algorithm(X=X, Y=Y, verb=verb, show=show);
align = hirschberg_algorithm_step(X=X, Y=Y, depth=1, verb=verb, show=show);
align = hirschberg_algorithm_step(X=X, Y=Y, depth=1, verbose=verbose, show=show);
word_x = align.as_string1();
word_y = align.as_string2();
# verbose output hier behandeln (irrelevant für Algorithmus):
if verb != []:
if verbose != []:
if EnumHirschbergShow.tree in show:
display = align.astree(braces=True);
else:
@@ -88,7 +82,7 @@ def hirschberg_algorithm_step(
X: str,
Y: str,
depth: int = 0,
verb: List[EnumHirschbergVerbosity] = [],
verbose: List[EnumHirschbergVerbosity] = [],
show: List[EnumHirschbergShow] = [],
) -> Alignment:
'''
@@ -106,8 +100,8 @@ def hirschberg_algorithm_step(
word_x, word_y = reconstruct_words(X = '-' + X, Y = '-' + Y, moves=[Moves[coord] for coord in path], path=path);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verb != [] and (EnumHirschbergShow.atoms in show):
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verb=verb);
if verbose != [] and (EnumHirschbergShow.atoms in show):
repr = display_cost_matrix(Costs=Costs, path=path, X = '-' + X, Y = '-' + Y, verbose=verbose);
print(f'\n\x1b[1mRekursionstiefe: {depth}\x1b[0m\n\n{repr}')
return AlignmentBasic(word1=word_x, word2=word_y);
@@ -127,7 +121,7 @@ def hirschberg_algorithm_step(
Costs2, Moves2 = compute_cost_matrix(X = '-' + X2, Y = '-' + Y2);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verb != []:
if verbose != []:
path1, path2 = reconstruct_optimal_path_halves(Costs1=Costs1, Costs2=Costs2, Moves1=Moves1, Moves2=Moves2);
repr = display_cost_matrix_halves(
Costs1 = Costs1,
@@ -138,7 +132,7 @@ def hirschberg_algorithm_step(
X2 = '-' + X2,
Y1 = '-' + Y1,
Y2 = '-' + Y2,
verb = verb,
verbose = verbose,
);
print(f'\n\x1b[1mRekursionstiefe: {depth}\x1b[0m\n\n{repr}')
@@ -146,8 +140,8 @@ def hirschberg_algorithm_step(
coord1, coord2 = get_optimal_transition(Costs1=Costs1, Costs2=Costs2);
p = coord1[0];
# Divide and Conquer ausführen:
align_left = hirschberg_algorithm_step(X=X[:p], Y=Y[:n], depth=depth+1, verb=verb, show=show);
align_right = hirschberg_algorithm_step(X=X[p:], Y=Y[n:], depth=depth+1, verb=verb, show=show);
align_left = hirschberg_algorithm_step(X=X[:p], Y=Y[:n], depth=depth+1, verbose=verbose, show=show);
align_right = hirschberg_algorithm_step(X=X[p:], Y=Y[n:], depth=depth+1, verbose=verbose, show=show);
# Resultate zusammensetzen:
return AlignmentPair(left=align_left, right=align_right);

View File

@@ -30,7 +30,7 @@ def represent_cost_matrix(
path: List[Tuple[int, int]],
X: str,
Y: str,
verb: List[EnumHirschbergVerbosity],
verbose: List[EnumHirschbergVerbosity],
pad: bool = False,
) -> np.ndarray: # NDArray[(Any, Any), Any]:
m = len(X); # display vertically
@@ -55,12 +55,12 @@ def represent_cost_matrix(
table[-3, 3:(3+n)] = '--';
table[3:(3+m), -1] = '|';
if EnumHirschbergVerbosity.costs in verb:
if EnumHirschbergVerbosity.costs in verbose:
table[3:(3+m), 3:(3+n)] = Costs.copy();
if EnumHirschbergVerbosity.moves in verb:
if EnumHirschbergVerbosity.moves in verbose:
for (i, j) in path:
table[3 + i, 3 + j] = f'\x1b[31;4;1m{table[3 + i, 3 + j]}\x1b[0m';
elif EnumHirschbergVerbosity.moves in verb:
elif EnumHirschbergVerbosity.moves in verbose:
table[3:(3+m), 3:(3+n)] = '\x1b[2m.\x1b[0m';
for (i, j) in path:
table[3 + i, 3 + j] = '\x1b[31;1m*\x1b[0m';
@@ -72,7 +72,7 @@ def display_cost_matrix(
path: List[Tuple[int, int]],
X: str,
Y: str,
verb: EnumHirschbergVerbosity,
verbose: EnumHirschbergVerbosity,
) -> str:
'''
Zeigt Kostenmatrix + optimalen Pfad.
@@ -85,7 +85,7 @@ def display_cost_matrix(
@returns
- eine 'printable' Darstellung der Matrix mit den Strings X, Y + Indexes.
'''
table = represent_cost_matrix(Costs=Costs, path=path, X=X, Y=Y, verb=verb);
table = represent_cost_matrix(Costs=Costs, path=path, X=X, Y=Y, verbose=verbose);
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(pd.DataFrame(table), showindex=False, stralign='center', tablefmt='plain');
return repr;
@@ -99,7 +99,7 @@ def display_cost_matrix_halves(
X2: str,
Y1: str,
Y2: str,
verb: EnumHirschbergVerbosity,
verbose: EnumHirschbergVerbosity,
) -> str:
'''
Zeigt Kostenmatrix + optimalen Pfad für Schritt im D & C Hirschberg-Algorithmus
@@ -112,8 +112,8 @@ def display_cost_matrix_halves(
@returns
- eine 'printable' Darstellung der Matrix mit den Strings X, Y + Indexes.
'''
table1 = represent_cost_matrix(Costs=Costs1, path=path1, X=X1, Y=Y1, verb=verb, pad=True);
table2 = represent_cost_matrix(Costs=Costs2, path=path2, X=X2, Y=Y2, verb=verb, pad=True);
table1 = represent_cost_matrix(Costs=Costs1, path=path1, X=X1, Y=Y1, verbose=verbose, pad=True);
table2 = represent_cost_matrix(Costs=Costs2, path=path2, X=X2, Y=Y2, verbose=verbose, pad=True);
# merge Taellen:
table = np.concatenate([table1[:, :-1], table2[::-1, ::-1]], axis=1);

View File

@@ -0,0 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.pollard_rho.algorithms import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'pollard_rho_algorithm_linear',
'pollard_rho_algorithm_exponential',
];

View File

@@ -0,0 +1,144 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from models.generated.config import *;
from src.core.utils import *;
from src.models.pollard_rho import *;
from src.algorithms.pollard_rho.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'pollard_rho_algorithm_linear',
'pollard_rho_algorithm_exponential',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD pollard's rho algorithm - with linear grwoth
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def pollard_rho_algorithm_linear(
n: int,
x_init: int = 2,
verbose: bool = False,
):
steps = [];
success = False;
f = lambda _: fct(_, n=n);
d = 1;
x = y = x_init;
steps.append(Step(x=x));
k = 0;
k_next = 1;
while True:
# aktualisiere x: x = f(x_prev):
x = f(x);
# aktualisiere y: y = f(f(y_prev)):
y = f(f(y));
# ggT berechnen:
d = math.gcd(abs(x-y), n);
steps.append(Step(x=x, y=y, d=d));
# Abbruchkriterien prüfen:
if d == 1: # weitermachen, solange d == 1
k += 1;
continue;
elif d == n: # versagt
success = False;
break;
else:
success = True;
break;
if verbose:
repr = display_table_linear(steps=steps);
print('');
print('\x1b[1mEuklidescher Algorithmus\x1b[0m');
print('');
print(repr);
print('');
if success:
print('\x1b[1mBerechneter Faktor:\x1b[0m');
print('');
print(f'd = \x1b[1m{d}\x1b[0m.');
else:
print('\x1b[91mKein (Prim)faktor erkannt!\x1b[0m');
print('');
return d;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD pollard's rho algorithm - with exponential grwoth
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def pollard_rho_algorithm_exponential(
n: int,
x_init: int = 2,
verbose: bool = False,
):
steps = [];
success = False;
f = lambda _: fct(_, n=n);
d = 1;
x = y = x_init;
steps.append(Step(x=x));
k = 0;
k_next = 1;
while True:
# aktualisiere x: x = f(x_prev):
x = f(x);
# aktualisiere y, wenn k = 2^j: y = x[j] = f(y_prev):
if k == k_next:
k_next = 2*k_next;
y = f(y);
# ggT berechnen:
d = math.gcd(abs(x-y), n);
steps.append(Step(x=x, y=y, d=d));
# Abbruchkriterien prüfen:
if d == 1: # weitermachen, solange d == 1
k += 1;
continue;
elif d == n: # versagt
success = False;
break;
else:
success = True;
break;
if verbose:
repr = display_table_exponential(steps=steps);
print('');
print('\x1b[1mEuklidescher Algorithmus\x1b[0m');
print('');
print(repr);
print('');
if success:
print('\x1b[1mBerechneter Faktor:\x1b[0m');
print('');
print(f'd = \x1b[1m{d}\x1b[0m.');
else:
print('\x1b[91mKein (Prim)faktor erkannt!\x1b[0m');
print('');
return d;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHOD function for Pollard's rho
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def fct(x: int, n: int) -> int:
return (x**2 - 1) % n;

View File

@@ -0,0 +1,65 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.models.pollard_rho import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'display_table_linear',
'display_table_exponential',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table - linear
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_table_linear(steps: List[Step]) -> str:
table = pd.DataFrame({
'i': [i for i in range(len(steps))],
'x': [step.x for step in steps],
'y': [step.y or '-' for step in steps],
'd': [step.d or '-' for step in steps],
}) \
.reset_index(drop=True);
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers=['i', 'x(i)', 'y(i) = x(2i)', 'gcd(|x - y|,n)'],
showindex=False,
colalign=('right', 'right', 'right', 'center'),
tablefmt='simple',
);
return repr;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table - exponential
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_table_exponential(steps: List[Step]) -> str:
table = pd.DataFrame({
'i': [i for i in range(len(steps))],
'x': [step.x for step in steps],
'y': [step.y or '-' for step in steps],
'd': [step.d or '-' for step in steps],
}) \
.reset_index(drop=True);
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers=['i', 'x(i)', 'y(i) = x([log₂(i)])', 'gcd(|x - y|,n)'],
showindex=False,
colalign=('right', 'right', 'right', 'center'),
tablefmt='simple',
);
return repr;

View File

@@ -0,0 +1,18 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.random_walk.algorithms import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'adaptive_walk_algorithm',
'gradient_walk_algorithm',
'metropolis_walk_algorithm',
];

View File

@@ -0,0 +1,247 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.maths import *;
from src.thirdparty.plots import *;
from src.thirdparty.types import *;
from models.generated.config import *;
from models.generated.commands import *;
from src.core.log import *;
from src.core.utils import *;
from src.models.random_walk import *;
from src.algorithms.random_walk.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'adaptive_walk_algorithm',
'gradient_walk_algorithm',
'metropolis_walk_algorithm',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MAX_ITERATIONS = 1000; # um endlose Schleifen zu verhindern
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD adaptive walk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def adaptive_walk_algorithm(
landscape: Landscape,
r: float,
coords_init: tuple,
optimise: EnumOptimiseMode,
verbose: bool,
):
'''
Führt den Adapative-Walk Algorithmus aus, um ein lokales Minimum zu bestimmen.
'''
# lege Fitness- und Umgebungsfunktionen fest:
match optimise:
case EnumOptimiseMode.max:
f = lambda x: -landscape.fitness(*x);
case _:
f = lambda x: landscape.fitness(*x);
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
label = lambda x: landscape.label(*x);
# initialisiere
steps = [];
x = coords_init;
fx = f(x);
fy = fx;
N = nbhd(x);
# führe walk aus:
k = 0;
while k < MAX_ITERATIONS:
# Wähle zufälligen Punkt und berechne fitness-Wert:
y = uniform_random_choice(N);
fy = f(y);
# Nur dann aktualisieren, wenn sich f-Wert verbessert:
if fy < fx:
# Punkt + Umgebung + f-Wert aktualisieren
x = y;
fx = fy;
N = nbhd(x);
step = Step(coords=x, label=label(x), improved=True, changed=True);
else:
# Nichts (außer logging) machen!
step = Step(coords=x, label=label(x));
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
if fx <= min([f(y) for y in N], default=fx):
step.stopped = True;
steps.append(step);
break;
steps.append(step);
k += 1;
return x;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD gradient walk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def gradient_walk_algorithm(
landscape: Landscape,
r: float,
coords_init: tuple,
optimise: EnumOptimiseMode,
verbose: bool,
):
'''
Führt den Gradient-Descent (bzw. Ascent) Algorithmus aus, um ein lokales Minimum zu bestimmen.
'''
# lege Fitness- und Umgebungsfunktionen fest:
match optimise:
case EnumOptimiseMode.max:
f = lambda x: -landscape.fitness(*x);
case _:
f = lambda x: landscape.fitness(*x);
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
label = lambda x: landscape.label(*x);
# initialisiere
steps = [];
x = coords_init;
fx = landscape.fitness(*x);
fy = fx;
N = nbhd(x);
f_values = [f(y) for y in N];
fmin = min(f_values);
Z = [y for y, fy in zip(N, f_values) if fy == fmin];
# führe walk aus:
k = 0;
while k < MAX_ITERATIONS:
# Wähle zufälligen Punkt mit steilstem Abstieg und berechne fitness-Wert:
y = uniform_random_choice(Z);
fy = fmin;
# Nur dann aktualisieren, wenn sich f-Wert verbessert:
if fy < fx:
# Punkt + Umgebung + f-Wert aktualisieren
x = y;
fx = fy;
N = nbhd(y);
f_values = [f(y) for y in N];
fmin = min(f_values);
Z = [y for y, fy in zip(N, f_values) if fy == fmin];
step = Step(coords=x, label=label(x), improved=True, changed=True);
else:
# Nichts (außer logging) machen!
step = Step(coords=x, label=label(x));
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
if fx <= min([f(y) for y in N], default=fx):
step.stopped = True;
steps.append(step);
break;
steps.append(step);
k += 1;
return x;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD metropolis walk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def metropolis_walk_algorithm(
landscape: Landscape,
r: float,
coords_init: tuple,
T: float,
annealing: bool,
optimise: EnumOptimiseMode,
verbose: bool,
):
'''
Führt den Metropolis-Walk Algorithmus aus, um ein lokales Minimum zu bestimmen.
'''
# lege Fitness- und Umgebungsfunktionen fest:
match optimise:
case EnumOptimiseMode.max:
f = lambda x: -landscape.fitness(*x);
case _:
f = lambda x: landscape.fitness(*x);
nbhd = lambda x: landscape.neighbourhood(*x, r=r, strict=True);
label = lambda x: landscape.label(*x);
# definiere anzahl der hinreichenden Schritt für Stabilität:
n_stable = 2*(3**(landscape.dim) - 1);
# initialisiere
x = coords_init;
fx = f(x);
fy = fx;
nbhd_x = nbhd(x);
steps = [];
step = Step(coords=x, label=label(x));
# führe walk aus:
k = 0;
n_unchanged = 0;
while k < MAX_ITERATIONS:
# Wähle zufälligen Punkt und berechne fitness-Wert:
y = uniform_random_choice(nbhd_x);
fy = f(y);
p = math.exp(-abs(fy-fx)/T);
u = random_binary(p);
# Aktualisieren, wenn sich f-Wert verbessert
# oder mit einer Wahrscheinlichkeit von p:
if fy < fx or u:
# Punkt + Umgebung + f-Wert aktualisieren
x = y;
fx = fy;
nbhd_x = nbhd(x);
n_unchanged = 0;
step = Step(coords=x, label=label(x), improved=(fy < fx), chance=u, probability=p, changed=True);
else:
# Nichts (außer logging) machen!
n_unchanged += 1;
step = Step(coords=x, label=label(x));
# »Temperatur« ggf. abkühlen:
if annealing:
T = cool_temperature(T, k);
# Nur dann (erfolgreich) abbrechen, wenn f-Wert lokal Min:
if n_unchanged >= n_stable:
step.stopped = True;
steps.append(step);
break;
steps.append(step);
k += 1;
if verbose:
for step in steps:
print(step);
return x;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def cool_temperature(T: float, k: int, const: float = 2.) -> float:
harm = const*(k + 1);
return T/(1 + T/harm);

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.core.log import *;
from src.models.random_walk import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'display_table',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display table
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_table(
) -> str:
log_warn('Noch nicht implementiert!');
return '';

View File

@@ -0,0 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.algorithms.rucksack.algorithms import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'rucksack_greedy_algorithm',
'rucksack_branch_and_bound_algorithm',
];

View File

@@ -0,0 +1,262 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from models.generated.config import *;
from src.core.utils import *;
from src.models.rucksack import *;
from src.models.stacks import *;
from src.algorithms.rucksack.display import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'rucksack_greedy_algorithm',
'rucksack_branch_and_bound_algorithm',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD greedy algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def rucksack_greedy_algorithm(
max_cost: float,
costs: np.ndarray,
values: np.ndarray,
items: np.ndarray,
fractional: bool,
verbose: bool,
) -> Solution:
'''
Durch den Greedy-Algorithm wird der optimale Wert eines Rucksacks
unter Rücksicht der Kapizitätsschranke eingeschätzt.
NOTE: Wenn man `fractional = True` verwendet, liefert der Algorithmus
eine obere Schranke des maximalen Wertes beim Originalproblem.
'''
# sortiere daten:
order = get_sort_order(costs=costs, values=values);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr = display_order(order=order, costs=costs, values=values, items=items, one_based=True);
print('');
print('\x1b[1mRucksack Problem - Greedy\x1b[0m');
print('');
print(repr);
print('');
# führe greedy aus:
n = len(costs);
cost_total = 0;
choice = [ Fraction(0) for _ in range(n) ];
for i in order:
# füge Item i hinzu, solange das Gesamtgewicht noch <= Schranke
if cost_total + costs[i] <= max_cost:
cost_total += costs[i];
choice[i] = Fraction(1);
# falls Bruchteile erlaubt sind, füge einen Bruchteil des i. Items hinzu und abbrechen
elif fractional:
choice[i] = Fraction(Fraction(max_cost - cost_total)/Fraction(costs[i]), _normalize=False);
break;
# ansonsten weiter machen:
else:
continue;
# Aspekte der Lösung speichern:
rucksack = [i for i, v in enumerate(choice) if v > 0]; # Indexes von Items im Rucksack
soln = Solution(
order = order,
choice = choice,
items = items[rucksack].tolist(),
costs = costs[rucksack].tolist(),
values = values[rucksack].tolist(),
);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr_rucksack = display_rucksack(items=items, costs=costs, values=values, choice=choice);
print('\x1b[1mEingeschätzte Lösung\x1b[0m');
print('');
print(f'Mask: [{", ".join(map(str, soln.choice))}]');
print('Rucksack:')
print(repr_rucksack);
print('');
# Lösung ausgeben
return soln;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD branch and bound algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def rucksack_branch_and_bound_algorithm(
max_cost: float,
costs: np.ndarray,
values: np.ndarray,
items: np.ndarray,
verbose: bool,
) -> Solution:
'''
Durch Branch & Bound wird der optimale Wert eines Rucksacks
unter Rücksicht der Kapizitätsschranke exakt und effizienter bestimmt.
'''
order = get_sort_order(costs=costs, values=values);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr = display_order(order=order, costs=costs, values=values, items=items, one_based=True);
print('');
print('\x1b[1mRucksack Problem - Branch & Bound\x1b[0m');
print('');
print(repr);
print('');
logged_steps = [];
step: Step;
mask = empty_mask(n=len(costs));
bound = np.inf;
S = Stack();
S.push(mask);
while not S.empty():
# top-Element auslesen und Bound berechnen:
A: Mask = S.top();
bound_subtree, choice, order_, state = estimate_lower_bound(mask=A, max_cost=max_cost, costs=costs, values=values, items=items);
# für logging (irrelevant für Algorithmus):
if verbose:
step = Step(bound=bound, bound_subtree=bound_subtree, stack_str=str(S), choice=choice, order=order_, indexes=A.indexes_unset, solution=state);
if bound_subtree < bound:
if state is not None:
step.move = EnumBranchAndBoundMove.BOUND;
step.bound = bound_subtree;
else:
step.move = EnumBranchAndBoundMove.BRANCH;
logged_steps.append(step);
S.pop();
# Update nur nötig, wenn die (eingeschätzte) untere Schranke von A das bisherige Minimum verbessert:
if bound_subtree < bound:
# Bound aktualisieren, wenn sich A nicht weiter aufteilen od. wenn sich A wie eine einelementige Option behandeln läst:
if state is not None:
bound = bound_subtree;
mask = state;
# Branch sonst
else:
B, C = A.split();
S.push(B);
# Nur dann C auf Stack legen, wenn mind. eine Möglichkeit in C die Kapazitätsschranke erfüllt:
if sum(costs[C.indexes_one]) <= max_cost:
S.push(C);
# Aspekte der Lösung speichern
rucksack = mask.indexes_one; # Indexes von Items im Rucksack
soln = Solution(
order = order,
choice = mask.choice,
items = items[rucksack].tolist(),
values = values[rucksack].tolist(),
costs = costs[rucksack].tolist(),
);
# verbose output hier behandeln (irrelevant für Algorithmus):
if verbose:
repr = display_branch_and_bound(values=values, steps=logged_steps);
repr_rucksack = display_rucksack(items=items, costs=costs, values=values, choice=mask.choice);
print(repr);
print('');
print('\x1b[1mLösung\x1b[0m');
print('');
print(f'Mask: [{", ".join(map(str, soln.choice))}]');
print('Rucksack:');
print(repr_rucksack);
print('');
# Lösung ausgeben
return soln;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHOD resort
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_sort_order(costs: np.ndarray, values: np.ndarray) -> List[int]:
'''
Sortiert Daten absteigend nach values/costs.
'''
n = len(costs);
indexes = list(range(n));
margin = [ value/cost for cost, value in zip(costs, values) ];
order = sorted(indexes, key=lambda i: -margin[i]);
return order;
def estimate_lower_bound(
mask: Mask,
max_cost: float,
costs: np.ndarray,
values: np.ndarray,
items: np.ndarray,
) -> Tuple[float, List[Fraction], List[int], Optional[Mask]]:
'''
Wenn partielle Information über den Rucksack festgelegt ist,
kann man bei dem unbekannten Teil das Rucksack-Problem
mit Greedy-Algorithmus »lösen«,
um schnell eine gute Einschätzung zu bestimmen.
NOTE: Diese Funktion wird `g(mask)` im Skript bezeichnet.
'''
indexes_one = mask.indexes_one;
indexes_unset = mask.indexes_unset;
n = len(mask);
choice = np.zeros(shape=(n,), dtype=Fraction);
order = np.asarray(range(n));
# Berechnungen bei Items mit bekanntem Status in Rucksack:
value_rucksack = sum(values[indexes_one]);
cost_rucksack = sum(costs[indexes_one]);
choice[indexes_one] = Fraction(1);
# Für Rest des Rucksacks (Items mit unbekanntem Status):
cost_rest = max_cost - cost_rucksack;
state = None;
# Prüfe, ob man als Lösung alles/nichts hinzufügen kann:
if len(indexes_unset) == 0:
state = mask;
value_rest = 0;
elif sum(costs[indexes_unset]) <= cost_rest:
state = mask.pad(MaskValue.ONE);
choice[indexes_unset] = Fraction(1);
value_rest = sum(values[indexes_unset]);
elif min(costs[indexes_unset]) > cost_rest:
state = mask.pad(MaskValue.ZERO);
choice[indexes_unset] = Fraction(0);
value_rest = 0;
# Sonst mit Greedy-Algorithmus lösen:
# NOTE: Lösung ist eine Überschätzung des max-Wertes.
else:
soln_rest = rucksack_greedy_algorithm(
max_cost = cost_rest, # <- Kapazität = Restgewicht
costs = costs[indexes_unset],
values = values[indexes_unset],
items = items[indexes_unset],
fractional = True,
verbose = False,
);
choice[indexes_unset] = soln_rest.choice;
value_rest = soln_rest.total_value;
# Berechne Permutation für Teilrucksack
permute_part(order, indexes=indexes_unset, order=soln_rest.order, in_place=True);
# Einschätzung des max-Wertes:
value_max_est = value_rucksack + value_rest;
# Ausgabe mit -1 multiplizieren (weil maximiert wird):
return -value_max_est, choice.tolist(), order.tolist(), state;

View File

@@ -0,0 +1,174 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.core.utils import *;
from src.setup import config;
from models.generated.config import *;
from src.models.stacks import *;
from src.models.rucksack import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'display_order',
'display_rucksack',
'display_branch_and_bound',
'display_sum',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display order
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_order(
order: List[int],
costs: np.ndarray,
values: np.ndarray,
items: np.ndarray,
one_based: bool = False,
) -> str:
table = pd.DataFrame({
'items': items,
'order': iperm(order),
'values': values,
'costs': costs,
'margin': [f'{value/cost:.6f}' for cost, value in zip(costs, values)],
}) \
.reset_index(drop=True);
if one_based:
table['order'] += 1;
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers=['item', 'greedy order', 'value', 'cost', 'value/cost'],
showindex=False,
colalign=('left', 'center', 'center', 'center', 'right'),
tablefmt='rst'
);
return repr;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display rucksack
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_rucksack(
items: np.ndarray,
costs: np.ndarray,
values: np.ndarray,
choice: List[Fraction],
) -> str:
show_options = config.OPTIONS.rucksack.show;
render = lambda r: f'{r:g}';
choice = np.asarray(choice);
rucksack = np.where(choice > 0);
if not(EnumRucksackShow.all_weights in show_options):
items = items[rucksack];
costs = costs[rucksack];
values = values[rucksack];
choice = choice[rucksack];
table = pd.DataFrame({
'items': items.tolist() + ['----', ''],
'nr': list(map(str, choice))
+ ['----', f'\x1b[92;1m{float(sum(choice)):g}\x1b[0m'],
'costs': list(map(render, costs))
+ ['----', f'\x1b[92;1m{sum(choice*costs):g}\x1b[0m'],
'values': list(map(render, values))
+ ['----', f'\x1b[92;1m{sum(choice*values):g}\x1b[0m'],
});
repr = tabulate(
table,
headers=['item', 'nr', 'cost', 'value'],
showindex=False,
colalign=('left', 'center', 'center', 'center'),
tablefmt='rst'
);
return repr;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display result of branch and bound
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_branch_and_bound(values: np.ndarray, steps: List[Step]) -> str:
show_options = config.OPTIONS.rucksack.show;
show_all_sums = (EnumRucksackShow.all_sums in show_options);
rows = [];
used_choices = [];
index_soln = max([-1] + [ i for i, step in enumerate(steps) if step.move == EnumBranchAndBoundMove.BOUND ]);
for i, step in enumerate(steps):
if show_all_sums or step.choice not in used_choices:
# Füge Summen-Ausdrücke für Greedy-Alg hinzu:
used_choices.append(step.choice);
expr = display_sum(choice=step.choice, values=values, as_maximum=False, order=step.order, indexes=step.indexes);
else:
expr = '';
bound_str = f'{step.bound:+g}';
solution_str = f'{step.solution or ""}';
move_str = ('' if step.move == EnumBranchAndBoundMove.NONE else step.move.value);
if i == index_soln:
bound_str = f'* \x1b[92;1m{bound_str}\x1b[0m';
rows.append({
'bound': f'{bound_str}',
'bound_subtree': f'{step.bound_subtree:g}',
'bound_subtree_sum': expr,
'stack': step.stack_str,
'solution': f'\x1b[2m{solution_str}\x1b[0m',
'move': f'\x1b[2m{move_str}\x1b[0m',
});
table = pd.DataFrame(rows).reset_index(drop=True);
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers=['bound', 'g(TOP(S))', '', 'S — stack', '\x1b[2msoln\x1b[0m', '\x1b[2mmove\x1b[0m'],
showindex=False,
colalign=('right', 'right', 'left', 'right', 'center', 'left'),
tablefmt='simple'
);
return repr;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD display sum
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def display_sum(
choice: List[Fraction],
values: np.ndarray,
order: Optional[List[int]] = None,
indexes: List[int] = [],
as_maximum: bool = True,
) -> str:
show_options = config.OPTIONS.rucksack.show;
show_all_weights = (EnumRucksackShow.all_weights in show_options);
def render(x: Tuple[bool, Fraction, float]):
b, u, value = x;
if u == 0:
expr = f'\x1b[94;2m{value:g}\x1b[0m' if b else f'\x1b[2m{value:g}\x1b[0m';
else:
expr = f'\x1b[94m{value:g}\x1b[0m' if b else f'\x1b[0m{value:g}\x1b[0m';
if not show_all_weights and u == 1:
return expr;
return f'\x1b[2;4m{u}\x1b[0m\x1b[2m·\x1b[0m{expr}';
parts = [ (i in indexes, u, x) for i, (u, x) in enumerate(zip(choice, values)) ];
if not (order is None):
parts = [ parts[j] for j in order ];
if not show_all_weights:
parts = list(filter(lambda x: x[1] > 0, parts));
expr = '\x1b[2m + \x1b[0m'.join(map(render, parts));
if as_maximum:
return f'\x1b[2m=\x1b[0m {expr}';
return f'\x1b[2m= -(\x1b[0m{expr}\x1b[2m)\x1b[0m';

View File

@@ -8,6 +8,7 @@
from __future__ import annotations;
from src.thirdparty.types import *;
from src.thirdparty.maths import *;
from src.core.log import *;
from src.models.stacks import *;
@@ -34,18 +35,31 @@ class State(Enum):
# Tarjan Algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def tarjan_algorithm(G: Graph, debug: bool = False) -> List[Any]:
def tarjan_algorithm(G: Graph, verbose: bool = False) -> List[Any]:
'''
# Tarjan Algorithm #
Runs the Tarjan-Algorithm to compute the strongly connected components.
'''
# initialise state - mark all nodes as UNTOUCHED:
ctx = Context(G, debug=debug);
ctx = Context(G);
# loop through all nodes and carry out Tarjan-Algorithm, provided node not already visitted.
for u in G.nodes:
if ctx.get_state(u) == State.UNTOUCHED:
tarjan_visit(G, u, ctx);
if verbose:
repr = ctx.repr();
print('');
print(f'\x1b[1mZusammenfassung der Ausführung des Tarjan-Algorithmus\x1b[0m');
print('');
print(repr);
print('');
print('\x1b[1mStark zshgd Komponenten:\x1b[0m')
print('');
for component in ctx.components:
print(component);
print('');
return ctx.components;
def tarjan_visit(G: Graph, u: Any, ctx: Context):
@@ -107,15 +121,15 @@ class NodeInformation(NodeInformationDefault):
@dataclass
class ContextDefault:
max_index: int = field(default=0);
debug: bool = field(default=False);
verbose: bool = field(default=False);
stack: Stack = field(default_factory=lambda: Stack());
components: list[list[Any]] = field(default_factory=lambda: []);
infos: dict[Any, NodeInformation] = field(default_factory=lambda: dict());
components: list[list[Any]] = field(default_factory=list);
infos: dict[Any, NodeInformation] = field(default_factory=dict);
finished: List[Any] = field(default_factory=list);
class Context(ContextDefault):
def __init__(self, G: Graph, debug: bool):
def __init__(self, G: Graph):
super().__init__();
self.debug = debug;
self.infos = { u: NodeInformation(u) for u in G.nodes };
def push(self, u: Any):
@@ -161,7 +175,22 @@ class Context(ContextDefault):
return self.get_info(u).index;
def log_info(self, u: Any):
if not self.debug:
return;
info = self.get_info(u);
log_debug(info);
self.finished.append(u);
def repr(self) -> str:
table = pd.DataFrame([ self.infos[u] for u in self.finished ]) \
.drop(columns='state');
table = table[['node', 'index', 'least_index']];
# benutze pandas-Dataframe + tabulate, um schöner darzustellen:
repr = tabulate(
table,
headers = {
'Knoten': 'node',
'Idx': 'index',
'min. Idx': 'least_index',
},
showindex = False,
stralign = 'center',
tablefmt = 'grid',
);
return repr;

51
code/python/src/api.py Normal file
View File

@@ -0,0 +1,51 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.models.config import *
from src.endpoints import *;
from src.core.calls import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'run_command',
'run_command_from_json',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# API METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely(tag='api-from-json')
def run_command_from_json(command_json: str) -> Result[CallResult, CallError]:
command = command_from_json(command_json);
return run_command(command);
@run_safely(tag='api-from-command')
def run_command(command: Command) -> Result[CallResult, CallError]:
if isinstance(command, CommandTarjan):
return endpoint_tarjan(command);
if isinstance(command, CommandTsp):
return endpoint_tsp(command);
elif isinstance(command, CommandHirschberg):
return endpoint_hirschberg(command);
elif isinstance(command, CommandRucksack):
return endpoint_rucksack(command);
elif isinstance(command, CommandRandomWalk):
return endpoint_random_walk(command);
elif isinstance(command, CommandGenetic):
return endpoint_genetic(command);
elif isinstance(command, CommandEuklid):
return endpoint_euklid(command);
elif isinstance(command, CommandPollard):
return endpoint_pollard_rho(command);
raise Exception(f'No endpoint set for `{command.name.value}`-command type.');

View File

@@ -0,0 +1,149 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations;
from src.thirdparty.code import *;
from src.thirdparty.misc import *;
from src.thirdparty.run import *;
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'CallResult',
'CallError',
'run_safely',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# local usage only
T = TypeVar('T');
V = TypeVar('V');
E = TypeVar('E', bound=list);
ARGS = ParamSpec('ARGS');
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Trace for debugging only!
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class CallResult(): # pragma: no cover
'''
An auxiliary class which keeps track of the latest return value during calls.
'''
action_taken: bool = field(default=False);
message: Optional[Any] = field(default=None);
@dataclass
class CallErrorRaw(): # pragma: no cover
timestamp: str = field();
tag: str = field();
errors: List[str] = field(default_factory=list);
class CallError(CallErrorRaw):
'''
An auxiliary class which keeps track of potentially multiple errors during calls.
'''
timestamp: str;
tag: str;
errors: List[str];
def __init__(self, tag: str, err: Any = Nothing()):
self.timestamp = str(datetime.now());
self.tag = tag;
self.errors = [];
if isinstance(err, list):
for e in err:
self.append(e);
else:
self.append(err);
def __len__(self) -> int:
return len(self.errors);
def append(self, e: Any):
if isinstance(e, Nothing):
return;
if isinstance(e, Some):
e = e.unwrap();
self.errors.append(str(e));
def extend(self, E: CallError):
self.errors.extend(E.errors);
def __repr__(self) -> str:
return f'CallError(tag=\'{self.tag}\', errors={self.errors})';
def __str__(self) -> str:
return self.__repr__();
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# DECORATOR - forces methods to run safely
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def run_safely(tag: Union[str, None] = None, error_message: Union[str, None] = None):
'''
Creates a decorator for an action to perform it safely.
@inputs (parameters)
- `tag` - optional string to aid error tracking.
- `error_message` - optional string for an error message.
### Example usage ###
```py
@run_safely(tag='recognise int', error_message='unrecognise string')
def action1(x: str) -> Result[int, CallError]:
return Ok(int(x));
assert action1('5') == Ok(5);
result = action1('not a number');
assert isinstance(result, Err);
err = result.unwrap_err();
assert isinstance(err, CallError);
assert err.tag == 'recognise int';
assert err.errors == ['unrecognise string'];
@run_safely('recognise int')
def action2(x: str) -> Result[int, CallError]:
return Ok(int(x));
assert action2('5') == Ok(5);
result = action2('not a number');
assert isinstance(result, Err);
err = result.unwrap_err();
assert isinstance(err, CallError);
assert err.tag == 'recognise int';
assert len(err.errors) == 1;
```
NOTE: in the second example, err.errors is a list containing
the stringified Exception generated when calling `int('not a number')`.
'''
def dec(action: Callable[ARGS, Result[V, CallError]]) -> Callable[ARGS, Result[V, CallError]]:
'''
Wraps action with return type Result[..., CallError],
so that it is performed safely a promise,
catching any internal exceptions as an Err(...)-component of the Result.
'''
@wraps(action)
def wrapped_action(*_, **__) -> Result[V, CallError]:
# NOTE: intercept Exceptions first, then flatten:
return Result.of(lambda: action(*_, **__)) \
.or_else(
lambda err: Err(CallError(
tag = tag or action.__name__,
err = error_message or err
))
) \
.and_then(lambda V: V);
return wrapped_action;
return dec;

View File

@@ -5,60 +5,93 @@
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
from src.thirdparty.code import *;
from src.thirdparty.log import *;
from src.thirdparty.types import *;
from src.core.calls import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'LOG_LEVELS',
'configure_logging',
'log_info',
'log_debug',
'log_warn',
'log_error',
'log_fatal',
'log_result',
'log_dev',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHODS logging
# CONSTANTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def log_info(*text: str):
'''
Prints an info message
'''
for line in text:
print("[\x1b[94;1mINFO\x1b[0m] {}".format(line));
_LOGGING_DEBUG_FILE: str = 'logs/debug.log';
class LOG_LEVELS(Enum): # pragma: no cover
INFO = logging.INFO;
DEBUG = logging.DEBUG;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def configure_logging(level: LOG_LEVELS): # pragma: no cover
logging.basicConfig(
format = '[\x1b[1m%(levelname)s\x1b[0m] %(message)s',
level = level.value,
);
return;
def log_debug(*text: str):
'''
Prints a debug message
'''
for line in text:
print("[\x1b[96;1mDEBUG\x1b[95;0m] {}".format(line));
return;
def log_debug(*messages: Any):
logging.debug(*messages);
def log_warn(*text: str):
'''
Prints a warning message
'''
for line in text:
print("[\x1b[93;1mWARNING\x1b[0m] {}".format(line));
return;
def log_info(*messages: Any):
logging.info(*messages);
def log_error(*text: str):
'''
Prints an error message
'''
for line in text:
print("[\x1b[91;1mERROR\x1b[0m] {}".format(line));
return;
def log_warn(*messages: Any):
logging.warning(*messages);
def log_fatal(*text: str):
'''
Prints a fatal error message + crashes
'''
for line in text:
print("[\x1b[91;1mFATAL\x1b[0m] {}".format(line));
def log_error(*messages: Any):
logging.error(*messages);
def log_fatal(*messages: Any):
logging.fatal(*messages);
exit(1);
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Special Methods
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def log_result(result: Result[CallResult, CallError], debug: bool = False):
'''
Logs safely encapsulated result of call as either debug/info or error.
@inputs
- `result` - the result of the call.
- `debug = False` (default) - if the result is okay, will be logged as an INFO message.
- `debug = True` - if the result is okay, will be logged as a DEBUG message.
'''
if isinstance(result, Ok):
value = result.unwrap();
if debug:
log_debug(asdict(value));
else:
log_info(asdict(value));
else:
err = result.unwrap_err();
log_error(asdict(err));
return;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# DEBUG LOGGING FOR DEVELOPMENT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def log_dev(*messages: Any): # pragma: no cover
with open(_LOGGING_DEBUG_FILE, 'a') as fp:
print(*messages, file=fp);

View File

@@ -0,0 +1,47 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'iperm',
'permute_part',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHODS permutations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def iperm(order: List[int]) -> List[int]:
'''
Computes the inverse of a permutation.
'''
perm = list(enumerate(order));
uorder = list(map(lambda x: x[0], sorted(perm, key=lambda x: x[1])));
return uorder;
def permute_part(
x: np.ndarray,
indexes: List[int],
order: List[int],
in_place: bool = True,
) -> np.ndarray:
'''
Permutes a part of a list by a relative permutation for that part of the list.
'''
if not in_place:
x = x[:];
part = x[indexes];
part[:] = part[order];
x[indexes] = part;
return x;

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.endpoints.ep_algorithm_hirschberg import *;
from src.endpoints.ep_algorithm_tarjan import *;
from src.endpoints.ep_algorithm_tsp import *;
from src.endpoints.ep_algorithm_rucksack import *;
from src.endpoints.ep_algorithm_genetic import *;
from src.endpoints.ep_algorithm_random_walk import *;
from src.endpoints.ep_algorithm_euklid import *;
from src.endpoints.ep_algorithm_pollard_rho import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_hirschberg',
'endpoint_tarjan',
'endpoint_tsp',
'endpoint_rucksack',
'endpoint_random_walk',
'endpoint_genetic',
'endpoint_euklid',
'endpoint_pollard_rho',
];

View File

@@ -0,0 +1,34 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.euklid import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_euklid',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_euklid(command: CommandEuklid) -> Result[CallResult, CallError]:
result = euklidean_algorithm(
a = command.numbers[0].__root__,
b = command.numbers[1].__root__,
verbose = config.OPTIONS.euklid.verbose,
);
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,34 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.genetic import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_genetic',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_genetic(command: CommandGenetic) -> Result[CallResult, CallError]:
result = genetic_algorithm(
individual1 = command.population[0],
individual2 = command.population[1],
verbose = config.OPTIONS.genetic.verbose,
);
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,42 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.hirschberg import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_hirschberg',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_hirschberg(command: CommandHirschberg) -> Result[CallResult, CallError]:
if command.once:
result = simple_algorithm(
X = command.word1,
Y = command.word2,
verbose = config.OPTIONS.hirschberg.verbose,
);
else:
result = hirschberg_algorithm(
X = command.word1,
Y = command.word2,
verbose = config.OPTIONS.hirschberg.verbose,
show = config.OPTIONS.hirschberg.show,
);
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,46 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.pollard_rho import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_pollard_rho',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_pollard_rho(command: CommandPollard) -> Result[CallResult, CallError]:
match command.growth:
case EnumPollardGrowthRate.linear:
result = pollard_rho_algorithm_linear(
n = command.number,
x_init = command.x_init,
verbose = config.OPTIONS.pollard_rho.verbose,
);
pass;
case EnumPollardGrowthRate.exponential:
result = pollard_rho_algorithm_exponential(
n = command.number,
x_init = command.x_init,
verbose = config.OPTIONS.pollard_rho.verbose,
);
pass;
case _ as growth:
raise Exception(f'No algorithm implemented for \x1b[1m{growth.value}\x1b[0m as growth rate.');
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,75 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.models.random_walk import *;
from src.algorithms.random_walk import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_random_walk',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_random_walk(command: CommandRandomWalk) -> Result[CallResult, CallError]:
# Compute landscape (fitness fct + topology) + initial co-ordinates:
one_based = command.one_based;
landscape = Landscape(
values = command.landscape.values,
labels = command.landscape.labels,
metric = command.landscape.neighbourhoods.metric,
one_based = one_based,
);
if isinstance(command.coords_init, list):
coords_init = tuple(command.coords_init);
if one_based:
coords_init = tuple(xx - 1 for xx in coords_init);
assert len(coords_init) == landscape.dim, 'Dimension of initial co-ordinations inconsistent with landscape!';
else:
coords_init = landscape.coords_middle;
match command.algorithm:
case EnumWalkMode.adaptive:
result = adaptive_walk_algorithm(
landscape = landscape,
r = command.landscape.neighbourhoods.radius,
coords_init = coords_init,
optimise = command.optimise,
verbose = config.OPTIONS.random_walk.verbose
);
case EnumWalkMode.gradient:
result = gradient_walk_algorithm(
landscape = landscape,
r = command.landscape.neighbourhoods.radius,
coords_init = coords_init,
optimise = command.optimise,
verbose = config.OPTIONS.random_walk.verbose
);
case EnumWalkMode.metropolis:
result = metropolis_walk_algorithm(
landscape = landscape,
r = command.landscape.neighbourhoods.radius,
coords_init = coords_init,
T = command.temperature_init,
annealing = command.annealing,
optimise = command.optimise,
verbose = config.OPTIONS.random_walk.verbose
);
case _ as alg:
raise Exception(f'No algorithm implemented for {alg.value}.');
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,54 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.rucksack import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_rucksack',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_rucksack(command: CommandRucksack) -> Result[CallResult, CallError]:
n = len(command.costs);
assert len(command.values) == n, 'Number of values and costs must coincide!';
assert len(command.items) in [0, n], f'Number of items must be 0 or {n}!';
command.items = command.items or [ str(index + 1) for index in range(n) ];
match command.algorithm:
case EnumRucksackAlgorithm.greedy:
result = rucksack_greedy_algorithm(
max_cost = command.max_cost,
costs = np.asarray(command.costs[:]),
values = np.asarray(command.values[:]),
items = np.asarray(command.items[:]),
fractional = command.allow_fractional,
verbose = config.OPTIONS.rucksack.verbose,
);
case EnumRucksackAlgorithm.branch_and_bound:
result = rucksack_branch_and_bound_algorithm(
max_cost = command.max_cost,
costs = np.asarray(command.costs[:]),
values = np.asarray(command.values[:]),
items = np.asarray(command.items[:]),
verbose = config.OPTIONS.rucksack.verbose,
);
case _ as alg:
raise Exception(f'No algorithm implemented for {alg.value}.');
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,37 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.models.graphs import *;
from src.algorithms.tarjan import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_tarjan',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_tarjan(command: CommandTarjan) -> Result[CallResult, CallError]:
result = tarjan_algorithm(
G = Graph(
nodes=command.nodes,
edges=list(map(tuple, command.edges)),
),
verbose = config.OPTIONS.tarjan.verbose
);
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,35 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.code import *;
from src.thirdparty.maths import *;
from models.generated.commands import *;
from src.core.calls import *;
from src.setup import config;
from src.algorithms.tsp import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'endpoint_tsp',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENDPOINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@run_safely()
def endpoint_tsp(command: CommandTsp) -> Result[CallResult, CallError]:
result = tsp_algorithm(
dist = np.asarray(command.dist, dtype=float),
optimise = min if command.optimise == EnumOptimiseMode.min else max,
verbose = config.OPTIONS.tsp.verbose,
);
return Ok(CallResult(action_taken=True, message=result));

View File

@@ -0,0 +1,19 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.models.config.app import *;
from src.models.config.commands import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'log_level',
'command_from_json',
'interpret_command',
];

View File

@@ -0,0 +1,31 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from models.generated.config import AppOptions;
from models.generated.config import EnumLogLevel;
from src.core.log import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'log_level',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHODS log level
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def log_level(options: AppOptions) -> LOG_LEVELS:
match options.log_level:
case EnumLogLevel.debug:
return LOG_LEVELS.DEBUG;
case EnumLogLevel.info:
return LOG_LEVELS.INFO;
case _:
return LOG_LEVELS.INFO;

View File

@@ -0,0 +1,55 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.config import *;
from models.generated.commands import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'command_from_json',
'interpret_command',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHODS Convert to appropriate command type
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def command_from_json(command_json: str) -> Command:
try:
instructions = json.loads(command_json);
except:
raise Exception('Invalid json!');
try:
command = Command(**instructions);
except:
raise Exception('Invalid instruction format - consult schema!');
command = interpret_command(command);
return command;
def interpret_command(command: Command) -> Command:
match command.name:
case EnumAlgorithmNames.tarjan:
return CommandTarjan(**command.dict());
case EnumAlgorithmNames.tsp:
return CommandTsp(**command.dict());
case EnumAlgorithmNames.hirschberg:
return CommandHirschberg(**command.dict());
case EnumAlgorithmNames.rucksack:
return CommandRucksack(**command.dict());
case EnumAlgorithmNames.random_walk:
return CommandRandomWalk(**command.dict());
case EnumAlgorithmNames.genetic:
return CommandGenetic(**command.dict());
case EnumAlgorithmNames.euklid:
return CommandEuklid(**command.dict());
case EnumAlgorithmNames.pollard_rho:
return CommandPollard(**command.dict());
raise Exception(f'Command type `{command.name.value}` not recognised!');

View File

@@ -0,0 +1,16 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.models.euklid.logging import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Step',
];

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Step',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Step
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class Step():
a: int = field();
b: int = field();
gcd: int = field();
div: int = field();
rem: int = field();
coeff_a: int = field();
coeff_b: int = field();

View File

@@ -7,6 +7,7 @@
from __future__ import annotations;
from models.generated.commands import *;
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -28,7 +29,8 @@ class Graph(object):
nodes: list[Any];
edges: list[tuple[Any,Any]]
def __init__(self, nodes: list[Any], edges: list[tuple[Any,Any]]):
def __init__(self, nodes: list[Any], edges: list[Tuple[Any, Any]]):
assert all(len(edge) == 2 for edge in edges);
self.nodes = nodes;
self.edges = edges;
return;

View File

@@ -6,7 +6,7 @@
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.setup.config import *;
from src.setup import config;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
@@ -23,6 +23,6 @@ __all__ = [
class Directions(Enum):
UNSET = -1;
# Prioritäten hier setzen
DIAGONAL = OPTIONS.hirschberg.move_priorities.diagonal;
HORIZONTAL = OPTIONS.hirschberg.move_priorities.horizontal;
VERTICAL = OPTIONS.hirschberg.move_priorities.vertical;
DIAGONAL = config.OPTIONS.hirschberg.move_priorities.diagonal;
HORIZONTAL = config.OPTIONS.hirschberg.move_priorities.horizontal;
VERTICAL = config.OPTIONS.hirschberg.move_priorities.vertical;

View File

@@ -6,7 +6,7 @@
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
from src.setup.config import *;
from src.setup import config;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
@@ -22,7 +22,7 @@ __all__ = [
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def gap_penalty(x: str):
return OPTIONS.hirschberg.penality_gap;
return config.OPTIONS.hirschberg.penality_gap;
def missmatch_penalty(x: str, y: str):
return 0 if x == y else OPTIONS.hirschberg.penality_mismatch;
return 0 if x == y else config.OPTIONS.hirschberg.penality_mismatch;

View File

@@ -0,0 +1,16 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.models.pollard_rho.logging import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Step',
];

View File

@@ -0,0 +1,26 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Step',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Step
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class Step():
x: int = field();
y: Optional[int] = field(default=None);
d: Optional[int] = field(default=None);

View File

@@ -0,0 +1,18 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.models.random_walk.landscape import *;
from src.models.random_walk.logging import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Landscape',
'Step',
];

View File

@@ -0,0 +1,124 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations;
from src.thirdparty.maths import *;
from src.thirdparty.misc import *;
from src.thirdparty.types import *;
from models.generated.commands import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Landscape',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# METHOD fitness function -> Array
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Landscape():
_fct: np.ndarray;
_labels: list[str];
_metric: EnumLandscapeMetric;
_radius: float;
_one_based: bool;
def __init__(
self,
values: DataTypeLandscapeValues,
labels: List[str],
metric: EnumLandscapeMetric = EnumLandscapeMetric.maximum,
one_based: bool = False,
):
self._fct = convert_to_nparray(values);
assert len(labels) == self.dim, 'A label is required for each axis/dimension!';
self._labels = labels;
self._metric = metric;
self._one_based = one_based;
return;
@property
def shape(self) -> tuple:
return self._fct.shape;
@property
def dim(self) -> int:
return len(self._fct.shape);
@property
def coords_middle(self) -> tuple:
return tuple(math.floor(s/2) for s in self.shape);
@property
def values(self) -> np.ndarray:
return self._fct;
def fitness(self, *x: int) -> float:
return self._fct[x];
def axis_label(self, i: int, x: int) -> str:
if self._one_based:
x = x + 1;
name = self._labels[i];
return f'{name}{x}';
def axis_labels(self, i: int) -> str:
s = self.shape[i];
return [ self.axis_label(i, x) for x in range(s) ];
def label(self, *x: int) -> str:
if self._one_based:
x = tuple(xx + 1 for xx in x);
expr = ','.join([ f'{name}{xx}' for name, xx in zip(self._labels, x)]);
if self.dim > 1:
expr = f'({expr})';
return expr;
def neighbourhood(self, *x: int, r: float, strict: bool = False) -> List[tuple]:
r = int(r);
sides = [
[ xx - j for j in range(1, r+1) if xx - j in range(s) ]
+ ([ xx ] if xx in range(s) else [])
+ [ xx + j for j in range(1, r+1) if xx + j in range(s) ]
for xx, s in zip(x, self.shape)
];
match self._metric:
case EnumLandscapeMetric.maximum:
umg = list(itertools_product(*sides));
case EnumLandscapeMetric.manhattan:
umg = [
(*x[:i], xx, *x[(i+1):])
for i, side in enumerate(sides)
for xx in side
];
case _:
umg = [ x ];
if strict:
umg = [ p for p in umg if p != x ];
return umg;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# AUXILIARY METHODS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def convert_to_array(values: DataTypeLandscapeValues) -> list:
return [
x if isinstance(x, float) else convert_to_array(x)
for x in values.__root__
];
def convert_to_nparray(values: DataTypeLandscapeValues) -> np.ndarray:
try:
list_of_lists = convert_to_array(values);
return np.asarray(list_of_lists, dtype=float);
except:
raise ValueError('Could not convert to a d-dimensional array! Ensure that the dimensions are consistent.');

View File

@@ -0,0 +1,32 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Step',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Step
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class Step():
coords: tuple = field();
label: str = field();
improved: bool = field(default=False);
chance: bool = field(default=False);
probability: float = field(default=0.);
changed: bool = field(default=False);
stopped: bool = field(default=False);

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from src.models.rucksack.mask import *;
from src.models.rucksack.solution import *;
from src.models.rucksack.logging import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'empty_mask',
'MaskValue',
'Mask',
'Solution',
'EnumBranchAndBoundMove',
'Step',
];

View File

@@ -0,0 +1,47 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
from src.models.rucksack.mask import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'EnumBranchAndBoundMove',
'Step',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Move
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class EnumBranchAndBoundMove(Enum):
NONE = -1;
BOUND = 'bound';
BRANCH = 'branch';
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CLASS Step
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class Step():
bound: float = field();
bound_subtree: float = field();
stack_str: str = field();
choice: List[Fraction] = field();
order: List[int] = field();
# the indexes upon which the greedy algorithm is carried out:
indexes: List[int] = field();
solution: Optional[Mask] = field();
move: EnumBranchAndBoundMove = field(default=EnumBranchAndBoundMove.NONE);

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'empty_mask',
'MaskValue',
'Mask',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENUMS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class MaskValue(Enum):
ZERO = 0;
ONE = 1;
UNSET = '*';
class Mask():
index: int;
values: List[MaskValue];
def __init__(self, values: List[MaskValue]):
self.values = values;
if MaskValue.UNSET in values:
self.index = values.index(MaskValue.UNSET);
else:
self.index = -1;
return;
def __len__(self) -> int:
return len(self.values);
def __str__(self) -> str:
return ''.join([ str(m.value) for m in self.values ]);
@property
def choice(self) -> List[Fraction]:
assert all(x != MaskValue.UNSET for x in self.values);
return [ Fraction(x.value) for x in self.values ];
@property
def indexes_set(self) -> List[int]:
return [i for i, value in enumerate(self.values) if value != MaskValue.UNSET];
@property
def indexes_one(self) -> List[int]:
return [i for i, value in enumerate(self.values) if value == MaskValue.ONE];
@property
def indexes_zero(self) -> List[int]:
return [i for i, value in enumerate(self.values) if value == MaskValue.ZERO];
@property
def indexes_unset(self) -> List[int]:
return [i for i, value in enumerate(self.values) if value == MaskValue.UNSET];
def splittable(self) -> bool:
return self.index >= 0;
def split(self) -> Tuple[Mask, Mask]:
vector1 = self.values[:];
vector1[self.index] = MaskValue.ZERO;
vector2 = self.values[:];
vector2[self.index] = MaskValue.ONE;
return Mask(vector1), Mask(vector2);
def pad(self, x: MaskValue) -> Mask:
'''
Pads unset values with a give by given value.
'''
return Mask([ x if u == MaskValue.UNSET else u for u in self.values ]);
@property
def support(self) -> List[int]:
return [ i for i, v in enumerate(self.values) if v == MaskValue.ONE ];
def empty_mask(n: int):
return Mask([MaskValue.UNSET for _ in range(n)]);

View File

@@ -0,0 +1,44 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from __future__ import annotations;
from src.thirdparty.maths import *;
from src.thirdparty.types import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Solution',
];
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ENUMS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@dataclass
class SolutionRaw():
order: List[int] = field();
choice: List[Fraction] = field();
items: List[str] = field();
values: List[float] = field(repr=False);
costs: List[float] = field(repr=False);
class Solution(SolutionRaw):
@property
def support(self) -> List[float]:
return [ i for i, v in enumerate(self.choice) if v > 0 ];
@property
def total_weight(self) -> float:
return sum([ self.choice[i]*x for (i, x) in zip(self.support, self.costs) ]);
@property
def total_value(self) -> float:
return sum([ self.choice[i]*x for (i, x) in zip(self.support, self.values) ]);

View File

@@ -39,6 +39,13 @@ class Stack:
def __contains__(self, value: Any) -> bool:
return value in self.elements;
def __iter__(self) -> Generator[Any, None, None]:
for value in self.elements:
yield value;
def __str__(self) -> str:
return ', '.join([str(value) for value in self.elements[::-1]]);
def push(self, value: Any):
'''
add element to stack
@@ -68,3 +75,6 @@ class Stack:
checks if element in stack:
'''
return element in self.elements;
def empty(self) -> bool:
return len(self) == 0;

View File

@@ -12,6 +12,8 @@ from src.thirdparty.types import *;
from models.generated.config import *;
from models.generated.commands import *;
from src.core.log import *;
from src.models.config import *;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
@@ -41,21 +43,16 @@ def load_assets_config(path: str) -> Config: # pragma: no cover
return Config(**assets);
def create_commands(path: str) -> List[Command]: # pragma: no cover
commands = [];
with open(path, 'r') as fp:
assets = yaml_load(fp, Loader=yaml_FullLoader);
for command in assets:
match Command(**command).name:
case EnumAlgorithmNames.tarjan:
commands.append(CommandTarjan(**command));
case EnumAlgorithmNames.tsp:
commands.append(CommandTsp(**command));
case EnumAlgorithmNames.hirschberg:
commands.append(CommandHirschberg(**command));
return commands;
return [
interpret_command(Command(**instruction))
for instruction in assets or []
];
# use lazy loaing to ensure that values only loaded (once) when used
CONFIG: Config = lazy(load_assets_config, path=PATH_ASSETS_CONFIG);
INFO: Info = lazy(lambda x: x.info, CONFIG);
OPTIONS: AppOptions = lazy(lambda x: x.options, CONFIG);
COMMANDS: List[Command] = lazy(create_commands, path=PATH_ASSETS_COMMANDS);
CONFIG: Config = lazy(load_assets_config, path=PATH_ASSETS_CONFIG);
INFO: Info = lazy(lambda x: x.info, CONFIG);
OPTIONS: AppOptions = lazy(lambda x: x.options, CONFIG);
LOG_LEVEL: LOG_LEVELS = lazy(log_level, OPTIONS);
COMMANDS: List[Command] = lazy(create_commands, path=PATH_ASSETS_COMMANDS);

18
code/python/src/thirdparty/log.py vendored Normal file
View File

@@ -0,0 +1,18 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import logging;
from logging import LogRecord;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'logging',
'LogRecord',
];

View File

@@ -5,10 +5,15 @@
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from fractions import Fraction;
import math;
import numpy as np;
from numpy.random import binomial as random_binomial;
random_binary = lambda p: (random_binomial(1, p) == 1);
import pandas as pd;
import random;
from random import uniform;
from random import choice as uniform_random_choice;
from tabulate import tabulate;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -16,9 +21,14 @@ from tabulate import tabulate;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'Fraction',
'math',
'np',
'random_binomial',
'random_binary',
'pd',
'random',
'uniform',
'uniform_random_choice',
'tabulate',
];

View File

@@ -5,6 +5,10 @@
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from datetime import datetime;
from datetime import timedelta;
from itertools import product as itertools_product;
import lorem;
import re;
from textwrap import dedent;
@@ -13,6 +17,10 @@ from textwrap import dedent;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'datetime',
'timedelta',
'itertools_product',
'lorem',
're',
'dedent',
];

22
code/python/src/thirdparty/plots.py vendored Normal file
View File

@@ -0,0 +1,22 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# IMPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from matplotlib import pyplot as mplt;
from matplotlib import animation as mplt_animation;
from matplotlib import colors as mplt_colours;
from matplotlib import patches as mplt_patches;
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# EXPORTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__all__ = [
'mplt',
'mplt_colours',
'mplt_patches',
'mplt_animation',
];

Some files were not shown because too many files have changed in this diff Show More